Menu Top
NCERT Exemplar Solutions
6th 7th 8th 9th 10th 11th 12th

Class 12th Chapters
1. Relations And Functions 2. Inverse Trigonometric Functions 3. Matrices
4. Determinants 5. Continuity And Differentiability 6. Application Of Derivatives
7. Integrals 8. Application Of Integrals 9. Differential Equations
10. Vector Algebra 11. Three Dimensional Geometry 12. Linear Programming
13. Probability Design Of The Question Paper-Set I Design Of The Question Paper-Set II

Content On This Page
Examples
Example 1 to 12 (Short Answer Type Questions) Example 13 to 20 (Long Answer Type Questions) Example 21 to 41 (Multiple Choice Questions)
Exercise
Question 1 to 11 (Short Answer Type Questions) Question 12 to 19 (Long Answer Type Questions) Question 20 to 37 (Multiple Choice Questions)
Question 38 to 48 (Fill in the Blanks) Question 49 to 55 (True or False)


Chapter 2 Inverse Trigonometric Functions

Welcome to this essential resource providing detailed, step-by-step solutions for the Class 12 NCERT Exemplar problems focused on Inverse Trigonometric Functions. These functions, representing the inverses of the standard trigonometric functions under restricted domains, are fundamental in calculus and various scientific applications. The Exemplar questions are designed to significantly challenge students beyond basic definitions, demanding a deep understanding of their properties, intricate manipulations for simplification and proof, careful handling of domain and range restrictions, and strategic approaches to solving complex equations involving these functions. Success requires precision, conceptual clarity, and strong algebraic skills.

Our solutions begin by reinforcing the definitions of the six inverse trigonometric functions: $\sin^{-1}x$ (arcsin x), $\cos^{-1}x$ (arccos x), $\tan^{-1}x$ (arctan x), $\csc^{-1}x$ (arccsc x), $\sec^{-1}x$ (arcsec x), and $\cot^{-1}x$ (arccot x). Critically, we emphasize the importance of their respective principal value branches – the restricted ranges within which the output (angle) must lie to ensure the inverse relations are true functions. These are:

Calculating the principal value of expressions like $\sin^{-1}(-\frac{1}{2})$ or $\tan^{-1}(\sqrt{3})$ is covered meticulously, ensuring answers strictly adhere to these ranges, a common point of error tested in the Exemplar.

A substantial portion of the solutions is dedicated to the exploration, application, and proof of numerous properties and identities involving inverse trigonometric functions. This forms the core challenge of the chapter at the Exemplar level. We cover:

Exemplar problems often require the strategic combination of several such properties, the use of clever algebraic or trigonometric substitutions (e.g., substituting $x = \tan\theta$, $x = \cos\theta$, or $x = \cos 2\theta$) to simplify complex expressions, or rigorous proofs of identities where domain restrictions play a crucial role. The solutions provide clear, step-by-step derivations and simplifications.

Solving equations involving inverse trigonometric functions is another major focus. The solutions demonstrate systematic approaches: applying identities to simplify the equation into a form involving a single inverse function or basic algebraic terms, solving for the variable, and – most crucially – verifying the obtained solutions. Verification is essential to ensure the potential solutions lie within the valid domain of the original inverse functions and actually satisfy the equation, thereby eliminating any extraneous roots introduced during the solving process (e.g., by squaring). These solutions address all typical Exemplar formats (MCQs testing subtle points, Fill-in-the-Blanks, True/False, Short/Long Answer) and provide the meticulous working and logical clarity needed to master this intricate topic, which is vital for subsequent calculus concepts like differentiation and integration involving inverse trigonometric functions.



Solved Examples

Example 1 to 12 (Short Answer Type Questions)

Example 1: Find the principal value of cos–1 x, for $x = \frac{\sqrt{3}}{2}$

Answer:

We are asked to find the principal value of $\cos^{-1} \left(\frac{\sqrt{3}}{2}\right)$.


The principal value branch of $\cos^{-1} x$ is $[0, \pi]$. This means the principal value is an angle $\theta$ such that $0 \leq \theta \leq \pi$ and $\cos \theta = x$.


We know that $\cos \left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$.


Since $\frac{\pi}{6} \in [0, \pi]$ (because $0 \leq \frac{\pi}{6} \leq \pi$), the principal value of $\cos^{-1} \left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$.


Therefore, the principal value of $\cos^{-1} \left(\frac{\sqrt{3}}{2}\right)$ is $\frac{\pi}{6}$.

Example 2: Evaluate $\tan^{–1} \left( \sin \left( \frac{−π}{2} \right) \right)$ .

Answer:

We need to evaluate $\tan^{-1} \left( \sin \left( -\frac{\pi}{2} \right) \right)$.


First, we evaluate the inner expression, $\sin \left( -\frac{\pi}{2} \right)$.

We know that $\sin(-x) = -\sin(x)$.

So, $\sin \left( -\frac{\pi}{2} \right) = -\sin \left( \frac{\pi}{2} \right)$.

We also know that $\sin \left( \frac{\pi}{2} \right) = 1$.

Therefore, $\sin \left( -\frac{\pi}{2} \right) = -1$.


Now, substitute this value back into the original expression:

$\tan^{-1} \left( \sin \left( -\frac{\pi}{2} \right) \right) = \tan^{-1}(-1)$.


We need to find the angle $\theta$ in the principal value branch of $\tan^{-1} x$, which is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, such that $\tan \theta = -1$.


We know that $\tan \left( \frac{\pi}{4} \right) = 1$.

Since $\tan(-x) = -\tan(x)$, we have $\tan \left( -\frac{\pi}{4} \right) = -\tan \left( \frac{\pi}{4} \right) = -1$.


Since $-\frac{\pi}{4} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the principal value of $\tan^{-1}(-1)$ is $-\frac{\pi}{4}$.


Thus, $\tan^{-1} \left( \sin \left( -\frac{\pi}{2} \right) \right) = -\frac{\pi}{4}$.

Example 3: Find the value of $\cos^{–1} \left( \cos \frac{13π}{6} \right)$ .

Answer:

We want to find the value of $\cos^{-1} \left( \cos \frac{13\pi}{6} \right)$.


The principal value branch of $\cos^{-1} x$ is $[0, \pi]$.


The angle $\frac{13\pi}{6}$ is not in the interval $[0, \pi]$, since $\frac{13}{6} > 1$.

We can rewrite $\frac{13\pi}{6}$ as follows:

$\frac{13\pi}{6} = \frac{12\pi + \pi}{6} = \frac{12\pi}{6} + \frac{\pi}{6} = 2\pi + \frac{\pi}{6}$.


Using the property $\cos(2\pi + \theta) = \cos \theta$, we have:

$\cos \left( \frac{13\pi}{6} \right) = \cos \left( 2\pi + \frac{\pi}{6} \right) = \cos \left( \frac{\pi}{6} \right)$.


Now, the expression becomes $\cos^{-1} \left( \cos \left( \frac{\pi}{6} \right) \right)$.


Since $\frac{\pi}{6} \in [0, \pi]$, which is the principal value branch of $\cos^{-1} x$, we can use the property $\cos^{-1}(\cos \theta) = \theta$ for $\theta \in [0, \pi]$.


Therefore,

$\cos^{-1} \left( \cos \frac{13\pi}{6} \right) = \cos^{-1} \left( \cos \frac{\pi}{6} \right) = \frac{\pi}{6}$.

Example 4: Find the value of $\tan^{–1} \left( \tan \frac{9π}{8} \right)$ .

Answer:

We want to find the value of $\tan^{-1} \left( \tan \frac{9\pi}{8} \right)$.


The principal value branch of $\tan^{-1} x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.


The angle $\frac{9\pi}{8}$ is not in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, since $\frac{9}{8} > \frac{1}{2}$. Specifically, $-\frac{\pi}{2} < \frac{9\pi}{8} < \frac{\pi}{2}$ is false.


We can use the property $\tan(\pi + \theta) = \tan \theta$ to find an equivalent angle within the principal value branch.

Let $\frac{9\pi}{8} = \pi + \theta$. Solving for $\theta$:

$\theta = \frac{9\pi}{8} - \pi = \frac{9\pi - 8\pi}{8} = \frac{\pi}{8}$.


So, $\tan \left( \frac{9\pi}{8} \right) = \tan \left( \pi + \frac{\pi}{8} \right) = \tan \left( \frac{\pi}{8} \right)$.


Now, the expression becomes $\tan^{-1} \left( \tan \left( \frac{\pi}{8} \right) \right)$.


Since $\frac{\pi}{8} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (as $0 < \frac{\pi}{8} < \frac{\pi}{2}$), which is the principal value branch of $\tan^{-1} x$, we can use the property $\tan^{-1}(\tan \theta) = \theta$ for $\theta \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.


Therefore,

$\tan^{-1} \left( \tan \frac{9\pi}{8} \right) = \tan^{-1} \left( \tan \frac{\pi}{8} \right) = \frac{\pi}{8}$.

Example 5: Evaluate tan (tan–1(– 4)).

Answer:

We are asked to evaluate $\tan (\tan^{–1}(– 4))$.


We use the property that for any real number $y$, $\tan (\tan^{-1} y) = y$.

$\tan (\tan^{-1} y) = y$

(For all $y \in \mathbb{R}$)


In this problem, $y = -4$.


Since $-4$ is a real number, the property applies.


Therefore,

$\tan (\tan^{–1}(– 4)) = -4$.

Example 6: Evaluate: $\tan^{–1} \sqrt{3} \;–\; \sec^{–1} (–2)$ .

Answer:

We need to evaluate the expression $\tan^{-1} \sqrt{3} - \sec^{-1}(-2)$.


First, let's find the value of $\tan^{-1} \sqrt{3}$.

The principal value branch of $\tan^{-1} x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

We look for an angle $\theta_1 \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\tan \theta_1 = \sqrt{3}$.

We know that $\tan \left( \frac{\pi}{3} \right) = \sqrt{3}$.

Since $\frac{\pi}{3} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the principal value of $\tan^{-1} \sqrt{3}$ is $\frac{\pi}{3}$.

$\tan^{-1} \sqrt{3} = \frac{\pi}{3}$

... (i)


Next, let's find the value of $\sec^{-1}(-2)$.

The principal value branch of $\sec^{-1} x$ is $[0, \pi] - \left\{\frac{\pi}{2}\right\}$.

We look for an angle $\theta_2 \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$ such that $\sec \theta_2 = -2$.

This is equivalent to finding $\theta_2$ such that $\cos \theta_2 = \frac{1}{-2} = -\frac{1}{2}$.

We know that $\cos \left( \frac{\pi}{3} \right) = \frac{1}{2}$.

Using the property $\cos(\pi - \theta) = -\cos \theta$, we have $\cos \left( \pi - \frac{\pi}{3} \right) = -\cos \left( \frac{\pi}{3} \right) = -\frac{1}{2}$.

So, $\cos \left( \frac{2\pi}{3} \right) = -\frac{1}{2}$.

Since $\frac{2\pi}{3} \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$, the principal value of $\sec^{-1}(-2)$ is $\frac{2\pi}{3}$.

$\sec^{-1} (-2) = \frac{2\pi}{3}$

... (ii)


Now, substitute the values from (i) and (ii) into the original expression:

$\tan^{-1} \sqrt{3} - \sec^{-1}(-2) = \frac{\pi}{3} - \frac{2\pi}{3}$.


Performing the subtraction:

$\frac{\pi}{3} - \frac{2\pi}{3} = \frac{\pi - 2\pi}{3} = \frac{-\pi}{3}$.


Thus, the value of the expression is $-\frac{\pi}{3}$.

Example 7: Evaluate: $\sin^{-1} \left[ \cos \left( \sin^{−1}\frac{\sqrt{3}}{2} \right) \right]$.

Answer:

We need to evaluate the expression $\sin^{-1} \left[ \cos \left( \sin^{-1}\frac{\sqrt{3}}{2} \right) \right]$.


First, let's evaluate the innermost part, $\sin^{-1}\frac{\sqrt{3}}{2}$.

The principal value branch of $\sin^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

We find an angle $\theta_1 \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $\sin \theta_1 = \frac{\sqrt{3}}{2}$.

We know that $\sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2}$.

Since $\frac{\pi}{3} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the principal value of $\sin^{-1} \frac{\sqrt{3}}{2}$ is $\frac{\pi}{3}$.

$\sin^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{3}$

... (i)


Now, we evaluate the cosine of this value: $\cos \left( \sin^{-1}\frac{\sqrt{3}}{2} \right)$.

Substitute the value from (i):

$\cos \left( \sin^{-1}\frac{\sqrt{3}}{2} \right) = \cos \left( \frac{\pi}{3} \right)$.

We know that $\cos \left( \frac{\pi}{3} \right) = \frac{1}{2}$.

$\cos \left( \sin^{-1}\frac{\sqrt{3}}{2} \right) = \frac{1}{2}$

... (ii)


Finally, we evaluate the outermost inverse sine function:

$\sin^{-1} \left[ \cos \left( \sin^{-1}\frac{\sqrt{3}}{2} \right) \right]$.

Substitute the value from (ii):

$\sin^{-1} \left( \frac{1}{2} \right)$.


Again, we find the principal value of $\sin^{-1} \frac{1}{2}$.

The principal value branch of $\sin^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

We look for an angle $\theta_2 \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $\sin \theta_2 = \frac{1}{2}$.

We know that $\sin \left( \frac{\pi}{6} \right) = \frac{1}{2}$.

Since $\frac{\pi}{6} \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, the principal value of $\sin^{-1} \frac{1}{2}$ is $\frac{\pi}{6}$.


Therefore,

$\sin^{-1} \left[ \cos \left( \sin^{−1}\frac{\sqrt{3}}{2} \right) \right] = \sin^{-1} \left( \frac{1}{2} \right) = \frac{\pi}{6}$.

Example 8: Prove that tan(cot–1x) = cot (tan–1x). State with reason whether the equality is valid for all values of x.

Answer:

To Prove: $\tan(\cot^{-1}x) = \cot(\tan^{-1}x)$.

Reasoning for Validity: State for which values of $x$ the equality is valid.


Proof:

Let $y = \cot^{-1}x$. The domain of $\cot^{-1}x$ is $\mathbb{R}$ and the range is $(0, \pi)$.

From $y = \cot^{-1}x$, we have $\cot y = x$.


We want to evaluate $\tan(\cot^{-1}x)$, which is $\tan y$.

Using the identity $\tan y = \frac{1}{\cot y}$, we get:

$\tan y = \frac{1}{x}$

(Provided $x \neq 0$)

So, $\tan(\cot^{-1}x) = \frac{1}{x}$ for all $x \in \mathbb{R}, x \neq 0$.

$\tan(\cot^{-1}x) = \frac{1}{x}$

... (i)


Now, let $z = \tan^{-1}x$. The domain of $\tan^{-1}x$ is $\mathbb{R}$ and the range is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

From $z = \tan^{-1}x$, we have $\tan z = x$.


We want to evaluate $\cot(\tan^{-1}x)$, which is $\cot z$.

Using the identity $\cot z = \frac{1}{\tan z}$, we get:

$\cot z = \frac{1}{x}$

(Provided $x \neq 0$)

So, $\cot(\tan^{-1}x) = \frac{1}{x}$ for all $x \in \mathbb{R}, x \neq 0$.

$\cot(\tan^{-1}x) = \frac{1}{x}$

... (ii)


From (i) and (ii), we see that $\tan(\cot^{-1}x) = \cot(\tan^{-1}x) = \frac{1}{x}$ for all $x \in \mathbb{R}, x \neq 0$.


Reasoning for Validity:

The equality $\tan(\cot^{-1}x) = \cot(\tan^{-1}x)$ holds when both sides of the equation are defined and equal.

The expressions $\cot^{-1}x$ and $\tan^{-1}x$ are defined for all real numbers $x$.

However, $\tan(\cot^{-1}x)$ is defined only if $\cot^{-1}x$ is not an odd multiple of $\frac{\pi}{2}$. The range of $\cot^{-1}x$ is $(0, \pi)$. The only value in $(0, \pi)$ that is an odd multiple of $\frac{\pi}{2}$ is $\frac{\pi}{2}$. $\cot^{-1}x = \frac{\pi}{2}$ when $x = \cot(\frac{\pi}{2}) = 0$. Thus, $\tan(\cot^{-1}x)$ is undefined at $x=0$.

Similarly, $\cot(\tan^{-1}x)$ is defined only if $\tan^{-1}x$ is not a multiple of $\pi$. The range of $\tan^{-1}x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. The only value in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ that is a multiple of $\pi$ is $0$. $\tan^{-1}x = 0$ when $x = \tan(0) = 0$. Thus, $\cot(\tan^{-1}x)$ is undefined at $x=0$.

Since both sides of the equality are undefined at $x=0$, the equality is not valid for $x=0$.

For any other real number $x \neq 0$, both sides are defined and equal to $\frac{1}{x}$ as shown in the proof above.


Conclusion:

The equality $\tan(\cot^{-1}x) = \cot(\tan^{-1}x)$ is valid for all real values of x except x = 0.

Reason: Both sides of the equality are undefined when $x=0$, and for all $x \neq 0$, both sides are equal to $\frac{1}{x}$.

Example 9: Find the value of $\sec \left( \tan^{−1} \frac{y}{2} \right)$ .

Answer:

We need to find the value of $\sec \left( \tan^{-1} \frac{y}{2} \right)$.


Let $\theta = \tan^{-1} \frac{y}{2}$.

By the definition of the inverse tangent function, this means $\tan \theta = \frac{y}{2}$.


We are asked to find the value of $\sec \theta$.

We can use the trigonometric identity relating $\sec \theta$ and $\tan \theta$: $\sec^2 \theta = 1 + \tan^2 \theta$.


Substitute the value of $\tan \theta$ into the identity:

$\sec^2 \theta = 1 + \left( \frac{y}{2} \right)^2$

$\sec^2 \theta = 1 + \frac{y^2}{4}$

$\sec^2 \theta = \frac{4 + y^2}{4}$


Now, take the square root of both sides:

$\sec \theta = \pm \sqrt{\frac{4 + y^2}{4}} = \pm \frac{\sqrt{4 + y^2}}{2}$.


The range of the principal value branch of $\tan^{-1} x$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Thus, $\theta$ lies in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

In the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the cosine function is positive, which means the secant function ($\sec \theta = \frac{1}{\cos \theta}$) is also positive.


Therefore, we take the positive square root:

$\sec \theta = \frac{\sqrt{4 + y^2}}{2}$.


Substituting back $\theta = \tan^{-1} \frac{y}{2}$, we get:

$\sec \left( \tan^{-1} \frac{y}{2} \right) = \frac{\sqrt{4 + y^2}}{2}$.


Alternatively, we can use a right-angled triangle approach.

Let $\theta = \tan^{-1} \frac{y}{2}$. Then $\tan \theta = \frac{y}{2}$.

Consider a right-angled triangle where $\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{y}{2}$.

Let the opposite side be $y$ and the adjacent side be $2$.

By the Pythagorean theorem, the hypotenuse is $\sqrt{(\text{Opposite})^2 + (\text{Adjacent})^2} = \sqrt{y^2 + 2^2} = \sqrt{y^2 + 4}$.

We need to find $\sec \theta$. $\sec \theta = \frac{\text{Hypotenuse}}{\text{Adjacent}}$.

$\sec \theta = \frac{\sqrt{y^2 + 4}}{2}$.

Since the range of $\tan^{-1} \frac{y}{2}$ is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\cos \theta$ is positive, and hence $\sec \theta$ is positive.

So, $\sec \left( \tan^{-1} \frac{y}{2} \right) = \frac{\sqrt{y^2 + 4}}{2}$.

Example 10: Find value of tan (cos–1 x) and hence evaluate $\tan \left( \cos^{−1} \frac{8}{17} \right)$ .

Answer:

To Find: The value of $\tan(\cos^{-1} x)$ in terms of $x$, and then evaluate $\tan \left( \cos^{−1} \frac{8}{17} \right)$.


Solution (General Expression):

Let $\theta = \cos^{-1} x$.

By the definition of the inverse cosine function, this means $\cos \theta = x$.

The domain of $\cos^{-1} x$ is $[-1, 1]$, and its principal value range is $[0, \pi]$.

We want to find $\tan(\cos^{-1} x)$, which is $\tan \theta$.


We can use the identity $\tan \theta = \frac{\sin \theta}{\cos \theta}$.

We know $\cos \theta = x$. We need to express $\sin \theta$ in terms of $x$.

Using the identity $\sin^2 \theta + \cos^2 \theta = 1$, we have $\sin^2 \theta = 1 - \cos^2 \theta = 1 - x^2$.

So, $\sin \theta = \pm \sqrt{1 - x^2}$.


Since $\theta = \cos^{-1} x$ and the principal value range is $[0, \pi]$, the angle $\theta$ is in the first or second quadrant (or on the boundaries $0, \pi$).

In the first quadrant ($0 \leq \theta \leq \frac{\pi}{2}$), $\sin \theta \geq 0$. This corresponds to $x \geq 0$.

In the second quadrant ($\frac{\pi}{2} < \theta \leq \pi$), $\sin \theta > 0$. This corresponds to $x < 0$.

Therefore, for $\theta \in [0, \pi]$, $\sin \theta \geq 0$. So we must take the positive square root.

$\sin \theta = \sqrt{1 - x^2}$

(Since $\theta \in [0, \pi]$, $\sin \theta \geq 0$)


Now, substitute $\sin \theta = \sqrt{1 - x^2}$ and $\cos \theta = x$ into the expression for $\tan \theta$:

$\tan \theta = \frac{\sqrt{1 - x^2}}{x}$.

This expression is defined for $x \in [-1, 1]$ and $x \neq 0$.

So, $\tan(\cos^{-1} x) = \frac{\sqrt{1 - x^2}}{x}$, for $x \in [-1, 1], x \neq 0$.


Solution (Evaluation):

We need to evaluate $\tan \left( \cos^{−1} \frac{8}{17} \right)$.

Using the general result derived above with $x = \frac{8}{17}$:

$\tan \left( \cos^{−1} \frac{8}{17} \right) = \frac{\sqrt{1 - \left(\frac{8}{17}\right)^2}}{\frac{8}{17}}$.


Now, calculate the value:

$\left(\frac{8}{17}\right)^2 = \frac{8^2}{17^2} = \frac{64}{289}$.

$1 - \left(\frac{8}{17}\right)^2 = 1 - \frac{64}{289} = \frac{289 - 64}{289} = \frac{225}{289}$.

$\sqrt{1 - \left(\frac{8}{17}\right)^2} = \sqrt{\frac{225}{289}} = \frac{\sqrt{225}}{\sqrt{289}} = \frac{15}{17}$.


Substitute this back into the expression:

$\tan \left( \cos^{−1} \frac{8}{17} \right) = \frac{\frac{15}{17}}{\frac{8}{17}}$.

$\tan \left( \cos^{−1} \frac{8}{17} \right) = \frac{15}{17} \times \frac{17}{8} = \frac{15}{8}$.


Alternatively, using a right-angled triangle for $x = \frac{8}{17}$:

Let $\theta = \cos^{-1} \frac{8}{17}$. Then $\cos \theta = \frac{8}{17}$.

Since $\frac{8}{17}$ is positive, $\theta$ is in the first quadrant, $0 < \theta < \frac{\pi}{2}$.

Consider a right-angled triangle with adjacent side 8 and hypotenuse 17.

The opposite side is $\sqrt{17^2 - 8^2} = \sqrt{289 - 64} = \sqrt{225} = 15$.

We need to find $\tan \theta = \tan \left( \cos^{-1} \frac{8}{17} \right)$.

In the right triangle, $\tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{15}{8}$.

Since $\theta$ is in the first quadrant, $\tan \theta$ is positive, so the value is $\frac{15}{8}$.


The value of $\tan(\cos^{-1} x)$ is $\frac{\sqrt{1 - x^2}}{x}$ for $x \in [-1, 1], x \neq 0$.

The value of $\tan \left( \cos^{−1} \frac{8}{17} \right)$ is $\frac{15}{8}$.

Example 11: Find the value of $\sin \left[ 2\cot^{−1} \left( \frac{−5}{12} \right) \right]$

Answer:

We need to find the value of $\sin \left[ 2\cot^{−1} \left( \frac{−5}{12} \right) \right]$.


Let $\theta = \cot^{-1} \left( \frac{-5}{12} \right)$.

The principal value branch of $\cot^{-1} x$ is $(0, \pi)$.

Since the argument $\left( \frac{-5}{12} \right)$ is negative, $\theta$ lies in the second quadrant, i.e., $\frac{\pi}{2} < \theta < \pi$.


From $\theta = \cot^{-1} \left( \frac{-5}{12} \right)$, we have $\cot \theta = \frac{-5}{12}$.


We need to evaluate $\sin(2\theta)$. We use the double angle identity for sine:

$\sin(2\theta) = 2 \sin \theta \cos \theta$

... (i)


We have $\cot \theta = \frac{\cos \theta}{\sin \theta} = -\frac{5}{12}$.

We can find $\sin \theta$ and $\cos \theta$ using the identity $\text{cosec}^2 \theta = 1 + \cot^2 \theta$ and $\sec^2 \theta = 1 + \tan^2 \theta$, or by constructing a right-angled triangle and considering the quadrant.

Using identities:

$\text{cosec}^2 \theta = 1 + \left( -\frac{5}{12} \right)^2 = 1 + \frac{25}{144} = \frac{144 + 25}{144} = \frac{169}{144}$.

$\text{cosec} \theta = \pm \sqrt{\frac{169}{144}} = \pm \frac{13}{12}$.

Since $\theta$ is in the second quadrant ($\frac{\pi}{2} < \theta < \pi$), $\sin \theta$ is positive. Therefore, $\text{cosec} \theta = \frac{13}{12}$.

$\sin \theta = \frac{1}{\text{cosec} \theta} = \frac{1}{\frac{13}{12}} = \frac{12}{13}$.


Now, find $\cos \theta$ using $\cot \theta = \frac{\cos \theta}{\sin \theta}$:

$\cos \theta = \cot \theta \times \sin \theta = \left( -\frac{5}{12} \right) \times \left( \frac{12}{13} \right)$.

$\cos \theta = -\frac{5 \times \cancel{12}^{1}}{\cancel{12}_{1} \times 13} = -\frac{5}{13}$.

This is consistent with $\theta$ being in the second quadrant, where $\cos \theta$ is negative.


Now, substitute the values of $\sin \theta$ and $\cos \theta$ into equation (i):

$\sin(2\theta) = 2 \times \left( \frac{12}{13} \right) \times \left( -\frac{5}{13} \right)$.

$\sin(2\theta) = 2 \times \frac{12 \times (-5)}{13 \times 13} = 2 \times \frac{-60}{169}$.

$\sin(2\theta) = \frac{-120}{169}$.


Therefore, $\sin \left[ 2\cot^{−1} \left( \frac{−5}{12} \right) \right] = -\frac{120}{169}$.

Example 12: Evaluate $\cos \left[ \sin^{−1} \frac{1}{4} + \sec^{−1} \frac{4}{3} \right]$

Answer:

Let the given expression be $E$.

We need to evaluate $E = \cos \left[ \sin^{−1} \frac{1}{4} + \sec^{−1} \frac{4}{3} \right]$.


Let $\sin^{−1} \frac{1}{4} = A$.

Then $\sin A = \frac{1}{4}$.

Since the principal value branch of $\sin^{-1} x$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, and $\frac{1}{4}$ is positive, $A$ lies in the first quadrant, i.e., $A \in \left(0, \frac{\pi}{2}\right)$.

We can find $\cos A$ using the identity $\sin^2 A + \cos^2 A = 1$. Since $A$ is in the first quadrant, $\cos A > 0$.

$\cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{1}{4}\right)^2}$.

$\cos A = \sqrt{1 - \frac{1}{16}} = \sqrt{\frac{16-1}{16}} = \sqrt{\frac{15}{16}}$.

$\cos A = \frac{\sqrt{15}}{4}$.


Let $\sec^{−1} \frac{4}{3} = B$.

Then $\sec B = \frac{4}{3}$.

The principal value branch of $\sec^{-1} x$ is $[0, \pi] - \{\frac{\pi}{2}\}$. Since $\frac{4}{3}$ is positive, $B$ lies in the first quadrant, i.e., $B \in \left(0, \frac{\pi}{2}\right)$.

From $\sec B = \frac{4}{3}$, we have $\cos B = \frac{1}{\sec B} = \frac{1}{4/3} = \frac{3}{4}$.

We can find $\sin B$ using the identity $\sin^2 B + \cos^2 B = 1$. Since $B$ is in the first quadrant, $\sin B > 0$.

$\sin B = \sqrt{1 - \cos^2 B} = \sqrt{1 - \left(\frac{3}{4}\right)^2}$.

$\sin B = \sqrt{1 - \frac{9}{16}} = \sqrt{\frac{16-9}{16}} = \sqrt{\frac{7}{16}}$.

$\sin B = \frac{\sqrt{7}}{4}$.


The given expression is $E = \cos(A+B)$.

Using the compound angle formula for cosine:

$\cos(A+B) = \cos A \cos B - \sin A \sin B$.

Substitute the values we found for $\sin A$, $\cos A$, $\sin B$, and $\cos B$:

$E = \left(\frac{\sqrt{15}}{4}\right) \left(\frac{3}{4}\right) - \left(\frac{1}{4}\right) \left(\frac{\sqrt{7}}{4}\right)$.

$E = \frac{3\sqrt{15}}{16} - \frac{\sqrt{7}}{16}$.

$E = \frac{3\sqrt{15} - \sqrt{7}}{16}$.


Thus, $\cos \left[ \sin^{−1} \frac{1}{4} + \sec^{−1} \frac{4}{3} \right] = \frac{3\sqrt{15} - \sqrt{7}}{16}$.

Example 13 to 20 (Long Answer Type Questions)

Example 13: Prove that $2\sin^{–1} \frac{3}{5} − \tan^{−1} \frac{17}{31} = \frac{π}{4}$

Answer:

To Prove: $2\sin^{–1} \frac{3}{5} − \tan^{−1} \frac{17}{31} = \frac{π}{4}$


Consider the Left Hand Side (L.H.S.): $2\sin^{–1} \frac{3}{5} − \tan^{−1} \frac{17}{31}$.

First, let us convert $\sin^{–1} \frac{3}{5}$ into the form of $\tan^{–1}$.

Let $\theta = \sin^{–1} \frac{3}{5}$.

Then $\sin \theta = \frac{3}{5}$.

Since $\sin \theta = \frac{3}{5}$ (which is positive), and the principal value branch of $\sin^{-1} x$ for $x > 0$ is $(0, \frac{\pi}{2})$, $\theta$ lies in the first quadrant. In the first quadrant, $\cos \theta$ is positive.

Using the identity $\sin^2 \theta + \cos^2 \theta = 1$, we get:

$\cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{25-9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

Now, we find $\tan \theta$:

$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3/5}{4/5} = \frac{3}{4}$.

So, $\theta = \tan^{–1} \frac{3}{4}$.

Thus, $\sin^{–1} \frac{3}{5} = \tan^{–1} \frac{3}{4}$.


Substitute this back into the L.H.S.:

L.H.S. $= 2\tan^{–1} \frac{3}{4} − \tan^{−1} \frac{17}{31}$.

Now, we use the formula $2\tan^{–1} x = \tan^{–1} \frac{2x}{1-x^2}$ for $|x| < 1$. Here $x = \frac{3}{4}$, and $|\frac{3}{4}| < 1$, so the formula is applicable.

$2\tan^{–1} \frac{3}{4} = \tan^{–1} \frac{2 \times \frac{3}{4}}{1 - \left(\frac{3}{4}\right)^2} = \tan^{–1} \frac{\frac{3}{2}}{1 - \frac{9}{16}} = \tan^{–1} \frac{\frac{3}{2}}{\frac{16-9}{16}} = \tan^{–1} \frac{\frac{3}{2}}{\frac{7}{16}}$.

$2\tan^{–1} \frac{3}{4} = \tan^{–1} \left(\frac{3}{2} \times \frac{16}{7}\right) = \tan^{–1} \frac{48}{14} = \tan^{–1} \frac{24}{7}$.


Now the L.H.S. becomes:

L.H.S. $= \tan^{–1} \frac{24}{7} − \tan^{−1} \frac{17}{31}$.

We use the formula $\tan^{–1} x − \tan^{–1} y = \tan^{–1} \frac{x-y}{1+xy}$ for $xy > -1$. Here $x = \frac{24}{7}$ and $y = \frac{17}{31}$.

Let's check the value of $xy$:

$xy = \frac{24}{7} \times \frac{17}{31} = \frac{408}{217}$.

Since $\frac{408}{217} > -1$, the formula is applicable.

L.H.S. $= \tan^{–1} \frac{\frac{24}{7} - \frac{17}{31}}{1 + \frac{24}{7} \times \frac{17}{31}}$.

Calculate the numerator and denominator:

Numerator: $\frac{24}{7} - \frac{17}{31} = \frac{24 \times 31 - 17 \times 7}{7 \times 31} = \frac{744 - 119}{217} = \frac{625}{217}$.

Denominator: $1 + \frac{408}{217} = \frac{217 + 408}{217} = \frac{625}{217}$.

L.H.S. $= \tan^{–1} \frac{\frac{625}{217}}{\frac{625}{217}} = \tan^{–1} 1$.


The principal value of $\tan^{–1} 1$ is $\frac{\pi}{4}$.

L.H.S. $= \frac{\pi}{4}$.

This is equal to the Right Hand Side (R.H.S.).

Thus, $2\sin^{–1} \frac{3}{5} − \tan^{−1} \frac{17}{31} = \frac{π}{4}$.

Hence Proved.

Example 14: Prove that

cot–1 7 + cot–1 8 + cot–1 18 = cot–1 3

Answer:

To Prove: $\cot^{–1} 7 + \cot^{–1} 8 + \cot^{–1} 18 = \cot^{–1} 3$


Proof:

Consider the Left Hand Side (L.H.S.): $\cot^{–1} 7 + \cot^{–1} 8 + \cot^{–1} 18$.

We know the identity $\cot^{–1} x = \tan^{–1} \frac{1}{x}$ for $x > 0$. Since $7, 8,$ and $18$ are all positive, we can convert each term into $\tan^{–1}$.

L.H.S. $= \tan^{–1} \frac{1}{7} + \tan^{–1} \frac{1}{8} + \tan^{–1} \frac{1}{18}$.


First, let's add the first two terms using the formula $\tan^{–1} x + \tan^{–1} y = \tan^{–1} \frac{x+y}{1-xy}$ for $xy < 1$.

Here $x = \frac{1}{7}$ and $y = \frac{1}{8}$. Their product $xy = \frac{1}{7} \times \frac{1}{8} = \frac{1}{56}$, which is less than 1.

$\tan^{–1} \frac{1}{7} + \tan^{–1} \frac{1}{8} = \tan^{–1} \left( \frac{\frac{1}{7} + \frac{1}{8}}{1 - \frac{1}{7} \times \frac{1}{8}} \right)$.

Calculate the numerator: $\frac{1}{7} + \frac{1}{8} = \frac{8+7}{56} = \frac{15}{56}$.

Calculate the denominator: $1 - \frac{1}{56} = \frac{56-1}{56} = \frac{55}{56}$.

So, $\tan^{–1} \frac{1}{7} + \tan^{–1} \frac{1}{8} = \tan^{–1} \left( \frac{15/56}{55/56} \right) = \tan^{–1} \frac{15}{55} = \tan^{–1} \frac{3}{11}$.


Now, the L.H.S. becomes $\tan^{–1} \frac{3}{11} + \tan^{–1} \frac{1}{18}$.

Again, use the formula $\tan^{–1} x + \tan^{–1} y = \tan^{–1} \frac{x+y}{1-xy}$ for $xy < 1$.

Here $x = \frac{3}{11}$ and $y = \frac{1}{18}$. Their product $xy = \frac{3}{11} \times \frac{1}{18} = \frac{3}{198} = \frac{1}{66}$, which is less than 1.

$\tan^{–1} \frac{3}{11} + \tan^{–1} \frac{1}{18} = \tan^{–1} \left( \frac{\frac{3}{11} + \frac{1}{18}}{1 - \frac{3}{11} \times \frac{1}{18}} \right)$.

Calculate the numerator: $\frac{3}{11} + \frac{1}{18} = \frac{3 \times 18 + 1 \times 11}{11 \times 18} = \frac{54 + 11}{198} = \frac{65}{198}$.

Calculate the denominator: $1 - \frac{3}{198} = \frac{198 - 3}{198} = \frac{195}{198}$.

So, $\tan^{–1} \frac{3}{11} + \tan^{–1} \frac{1}{18} = \tan^{–1} \left( \frac{65/198}{195/198} \right) = \tan^{–1} \frac{65}{195}$.


Simplify the fraction $\frac{65}{195}$. Both numbers are divisible by 65 ($195 = 3 \times 65$).

$\frac{65}{195} = \frac{\cancel{65}^1}{\cancel{195}_3} = \frac{1}{3}$.

So, L.H.S. $= \tan^{–1} \frac{1}{3}$.


Finally, convert back to $\cot^{–1}$ using the identity $\tan^{–1} x = \cot^{–1} \frac{1}{x}$ for $x > 0$.

L.H.S. $= \tan^{–1} \frac{1}{3} = \cot^{–1} \frac{1}{1/3} = \cot^{–1} 3$.

This is equal to the Right Hand Side (R.H.S.).

Thus, $\cot^{–1} 7 + \cot^{–1} 8 + \cot^{–1} 18 = \cot^{–1} 3$.

Hence Proved.

Example 15: Which is greater, tan 1 or tan–1 1?

Answer:

We need to compare the values of $\tan 1$ and $\tan^{-1} 1$.


First, let's consider $\tan^{-1} 1$.

The value of $\tan^{-1} 1$ is the angle $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ such that $\tan \theta = 1$.

We know that $\tan \frac{\pi}{4} = 1$.

Since $\frac{\pi}{4} \in (-\frac{\pi}{2}, \frac{\pi}{2})$, the principal value of $\tan^{-1} 1$ is $\frac{\pi}{4}$.

So, $\tan^{-1} 1 = \frac{\pi}{4}$.


Next, let's consider $\tan 1$.

Here, '1' refers to 1 radian.

We know that $\pi \approx 3.14159$.

Therefore, $\frac{\pi}{4} \approx \frac{3.14159}{4} \approx 0.785$.

And $\frac{\pi}{2} \approx \frac{3.14159}{2} \approx 1.5708$.

Comparing 1 radian with these values, we see that $0.785 < 1 < 1.5708$.

This means $1 \text{ radian}$ lies between $\frac{\pi}{4}$ and $\frac{\pi}{2}$.

So, $\frac{\pi}{4} < 1 < \frac{\pi}{2}$.


The tangent function, $\tan x$, is strictly increasing in the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$.

Since both $\frac{\pi}{4}$ and 1 are within this interval and $\frac{\pi}{4} < 1$, we can say that $\tan(\frac{\pi}{4}) < \tan(1)$.

We know $\tan(\frac{\pi}{4}) = 1$.

Thus, $1 < \tan 1$.


Now, we compare $\tan 1$ and $\tan^{-1} 1$.

We found that $\tan 1 > 1$.

We found that $\tan^{-1} 1 = \frac{\pi}{4} \approx 0.785$.

Since $\tan 1$ is greater than 1, and $\tan^{-1} 1$ is approximately 0.785, it is clear that $\tan 1$ is greater than $\tan^{-1} 1$.


Therefore, $\tan 1 > \tan^{-1} 1$.

Answer: $\tan 1$ is greater than $\tan^{-1} 1$.

Example 16: Find the value of

$\sin \left( 2\tan^{−1} \frac{2}{3} \right) + \cos (\tan^{-1}\sqrt{3})$

Answer:

To Find: The value of $\sin \left( 2\tan^{−1} \frac{2}{3} \right) + \cos (\tan^{-1}\sqrt{3})$.


Solution:

Let's evaluate the first part of the expression, $\sin \left( 2\tan^{−1} \frac{2}{3} \right)$.

Let $A = \tan^{−1} \frac{2}{3}$.

Then $\tan A = \frac{2}{3}$.

Since $\frac{2}{3} > 0$, $A$ is in the first quadrant, so $A \in \left(0, \frac{\pi}{2}\right)$.

We use the double angle formula for sine in terms of tangent: $\sin(2A) = \frac{2 \tan A}{1 + \tan^2 A}$.

Substitute the value of $\tan A$:

$\sin(2A) = \frac{2 \times \frac{2}{3}}{1 + \left(\frac{2}{3}\right)^2} = \frac{\frac{4}{3}}{1 + \frac{4}{9}}$.

Simplify the denominator: $1 + \frac{4}{9} = \frac{9+4}{9} = \frac{13}{9}$.

So, $\sin(2A) = \frac{\frac{4}{3}}{\frac{13}{9}} = \frac{4}{3} \times \frac{9}{13}$.

$\sin \left( 2\tan^{−1} \frac{2}{3} \right) = \frac{4}{\cancel{3}^1} \times \frac{\cancel{9}^3}{13} = \frac{4 \times 3}{1 \times 13} = \frac{12}{13}$.


Now let's evaluate the second part of the expression, $\cos (\tan^{-1}\sqrt{3})$.

Let $B = \tan^{-1}\sqrt{3}$.

Then $\tan B = \sqrt{3}$.

The principal value of $\tan^{-1}\sqrt{3}$ is $\frac{\pi}{3}$, since $\tan \frac{\pi}{3} = \sqrt{3}$ and $\frac{\pi}{3} \in (-\frac{\pi}{2}, \frac{\pi}{2})$.

So, $B = \frac{\pi}{3}$.

We need to find $\cos B = \cos \frac{\pi}{3}$.

$\cos \frac{\pi}{3} = \frac{1}{2}$.

So, $\cos (\tan^{-1}\sqrt{3}) = \frac{1}{2}$.


Now, we add the values of the two parts:

The expression is $\sin \left( 2\tan^{−1} \frac{2}{3} \right) + \cos (\tan^{-1}\sqrt{3}) = \frac{12}{13} + \frac{1}{2}$.

To add the fractions, find a common denominator, which is 26.

$\frac{12}{13} + \frac{1}{2} = \frac{12 \times 2}{13 \times 2} + \frac{1 \times 13}{2 \times 13} = \frac{24}{26} + \frac{13}{26}$.

Add the numerators:

$\frac{24+13}{26} = \frac{37}{26}$.


Thus, the value of the expression is $\frac{37}{26}$.

Example 17: Solve for x

$\tan^{-1} \left( \frac{1−x}{1+x} \right) = \frac{1}{2} \tan^{-1} x, \;x > 0$

Answer:

To Solve: $\tan^{-1} \left( \frac{1−x}{1+x} \right) = \frac{1}{2} \tan^{-1} x$ for $x > 0$.


Solution:

The given equation is:

$\tan^{-1} \left( \frac{1−x}{1+x} \right) = \frac{1}{2} \tan^{-1} x$


We use the property $\tan^{-1} y - \tan^{-1} z = \tan^{-1} \left( \frac{y-z}{1+yz} \right)$, which is valid if $yz > -1$.

Let $y=1$ and $z=x$. The term $\tan^{-1} \left( \frac{1−x}{1+x} \right)$ can be written as $\tan^{-1} 1 - \tan^{-1} x$, provided $1 \cdot x > -1$, i.e., $x > -1$.

The given condition is $x > 0$, which implies $x > -1$. Therefore, the property is applicable.

So, $\tan^{-1} \left( \frac{1−x}{1+x} \right) = \tan^{-1} 1 - \tan^{-1} x$.

We know that $\tan^{-1} 1 = \frac{\pi}{4}$.

Substituting this into the equation, we get:

$\frac{\pi}{4} - \tan^{-1} x = \frac{1}{2} \tan^{-1} x$.


Now, let $y = \tan^{-1} x$. The equation becomes:

$\frac{\pi}{4} - y = \frac{1}{2} y$.

Add $y$ to both sides:

$\frac{\pi}{4} = \frac{1}{2} y + y$.

Combine the terms on the right side:

$\frac{\pi}{4} = \left( \frac{1}{2} + 1 \right) y$.

$\frac{\pi}{4} = \frac{3}{2} y$.


Now, solve for $y$ by multiplying both sides by $\frac{2}{3}$:

$y = \frac{2}{3} \times \frac{\pi}{4}$.

$y = \frac{\cancel{2}^1}{3} \times \frac{\pi}{\cancel{4}^2}$.

$y = \frac{\pi}{6}$.


Substitute back $y = \tan^{-1} x$:

$\tan^{-1} x = \frac{\pi}{6}$.

To find $x$, take the tangent of both sides:

$x = \tan \left( \frac{\pi}{6} \right)$.

We know the value of $\tan \left( \frac{\pi}{6} \right)$ is $\frac{1}{\sqrt{3}}$.

$x = \frac{1}{\sqrt{3}}$.


We must check if this solution satisfies the given condition $x > 0$.

Our solution is $x = \frac{1}{\sqrt{3}}$. Since $\sqrt{3}$ is a positive number, $\frac{1}{\sqrt{3}}$ is also a positive number.

So, the condition $x > 0$ is satisfied.


The solution to the equation is $x = \frac{1}{\sqrt{3}}$.

Example 18: Find the values of x which satisfy the equation

sin–1 x + sin–1 (1 – x) = cos–1 x

Answer:

To Find: The values of $x$ which satisfy the equation $\sin^{–1} x + \sin^{–1} (1 – x) = \cos^{–1} x$.


Solution:

The given equation is $\sin^{–1} x + \sin^{–1} (1 – x) = \cos^{–1} x$.

The domain of $\sin^{-1} u$ is $[-1, 1]$, and the domain of $\cos^{-1} u$ is $[-1, 1]$.

For the equation to be defined, we must have:

$x \in [-1, 1]$

$1-x \in [-1, 1] \implies -1 \leq 1-x \leq 1 \implies -2 \leq -x \leq 0 \implies 0 \leq x \leq 2$

$x \in [-1, 1]$

Combining these conditions, the possible values of $x$ must be in the interval $[0, 1]$.


We use the identity $\cos^{-1} x + \sin^{-1} x = \frac{\pi}{2}$. This implies $\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$.

Substitute this into the given equation:

$\sin^{–1} x + \sin^{–1} (1 – x) = \frac{\pi}{2} - \sin^{-1} x$.

Rearrange the terms by moving $\sin^{-1} x$ from the right side to the left side:

$\sin^{–1} x + \sin^{-1} x + \sin^{–1} (1 – x) = \frac{\pi}{2}$.

$2\sin^{–1} x + \sin^{–1} (1 – x) = \frac{\pi}{2}$.


Let $\theta = \sin^{-1} x$. Then $x = \sin \theta$.

Since $x \in [0, 1]$, the value of $\theta = \sin^{-1} x$ lies in the interval $[0, \frac{\pi}{2}]$.

Substitute $\theta$ into the equation:

$2\theta + \sin^{–1} (1 – \sin \theta) = \frac{\pi}{2}$.

Isolate the term with $\sin^{–1}$:

$\sin^{–1} (1 – \sin \theta) = \frac{\pi}{2} - 2\theta$.


For the principal value $\sin^{–1}(u)$ to be equal to $v$, we must have $\sin v = u$ and $v \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

In our equation, $u = 1-\sin\theta$ and $v = \frac{\pi}{2}-2\theta$.

Since $\theta \in [0, \frac{\pi}{2}]$, the range of $2\theta$ is $[0, \pi]$.

The range of $\frac{\pi}{2} - 2\theta$ is $[\frac{\pi}{2}-\pi, \frac{\pi}{2}-0] = [-\frac{\pi}{2}, \frac{\pi}{2}]$. This range is within the principal value branch of $\sin^{-1}$.

Taking the sine of both sides of the equation $\sin^{–1} (1 – \sin \theta) = \frac{\pi}{2} - 2\theta$, we get:

$1 – \sin \theta = \sin \left( \frac{\pi}{2} - 2\theta \right)$.


Using the trigonometric identity $\sin(\frac{\pi}{2} - \alpha) = \cos \alpha$, we have $\sin \left( \frac{\pi}{2} - 2\theta \right) = \cos (2\theta)$.

So, the equation becomes:

$1 – \sin \theta = \cos (2\theta)$.

Now, use the double angle identity for cosine, $\cos(2\theta) = 1 - 2\sin^2 \theta$:

$1 – \sin \theta = 1 - 2\sin^2 \theta$.


Rearrange the equation to solve for $\sin \theta$:

$1 – \sin \theta - (1 - 2\sin^2 \theta) = 0$.

$1 – \sin \theta - 1 + 2\sin^2 \theta = 0$.

$2\sin^2 \theta - \sin \theta = 0$.

Factor out $\sin \theta$:

$\sin \theta (2\sin \theta - 1) = 0$.


This equation holds if either $\sin \theta = 0$ or $2\sin \theta - 1 = 0$.

Case 1: $\sin \theta = 0$.

Since $x = \sin \theta$, we have $x = 0$.

Check if $x=0$ is a solution in the original equation:

$\sin^{-1} 0 + \sin^{-1} (1 - 0) = \cos^{-1} 0$.

$\sin^{-1} 0 + \sin^{-1} 1 = \cos^{-1} 0$.

$0 + \frac{\pi}{2} = \frac{\pi}{2}$.

$\frac{\pi}{2} = \frac{\pi}{2}$. This is true. So $x=0$ is a solution.


Case 2: $2\sin \theta - 1 = 0$.

$2\sin \theta = 1$.

$\sin \theta = \frac{1}{2}$.

Since $x = \sin \theta$, we have $x = \frac{1}{2}$.

Check if $x=\frac{1}{2}$ is a solution in the original equation:

$\sin^{-1} \frac{1}{2} + \sin^{-1} (1 - \frac{1}{2}) = \cos^{-1} \frac{1}{2}$.

$\sin^{-1} \frac{1}{2} + \sin^{-1} \frac{1}{2} = \cos^{-1} \frac{1}{2}$.

$2 \sin^{-1} \frac{1}{2} = \cos^{-1} \frac{1}{2}$.

We know $\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$ and $\cos^{-1} \frac{1}{2} = \frac{\pi}{3}$.

$2 \times \frac{\pi}{6} = \frac{\pi}{3}$.

$\frac{\pi}{3} = \frac{\pi}{3}$. This is true. So $x=\frac{1}{2}$ is a solution.


Both solutions $x=0$ and $x=\frac{1}{2}$ fall within the valid domain $[0, 1]$.

The values of $x$ that satisfy the equation are $0$ and $\frac{1}{2}$.

Example 19: Solve the equation $\sin^{–1} 6x + \sin^{–1} 6 \sqrt{3} x = - \frac{π}{2}$

Answer:

To Find: The values of $x$ which satisfy the equation $\sin^{–1} 6x + \sin^{–1} 6 \sqrt{3} x = - \frac{π}{2}$.


Solution:

The given equation is $\sin^{–1} 6x + \sin^{–1} 6 \sqrt{3} x = - \frac{π}{2}$.


For the inverse sine function $\sin^{–1} u$ to be defined, the value of $u$ must be in the interval $[-1, 1]$.

Thus, for the given equation, we must have:

$-1 \leq 6x \leq 1$ which implies $-\frac{1}{6} \leq x \leq \frac{1}{6}$.

$-1 \leq 6\sqrt{3} x \leq 1$ which implies $-\frac{1}{6\sqrt{3}} \leq x \leq \frac{1}{6\sqrt{3}}$.

The domain of the equation is the intersection of these two intervals. Since $\frac{1}{6\sqrt{3}} = \frac{\sqrt{3}}{18}$ and $\frac{1}{6} = \frac{3}{18}$, and $\sqrt{3} < 3$, we have $\frac{1}{6\sqrt{3}} < \frac{1}{6}$.

The domain is $x \in \left[-\frac{1}{6\sqrt{3}}, \frac{1}{6\sqrt{3}}\right]$.


We use the identity for inverse sine functions which states that $\sin^{–1} u + \sin^{–1} v = -\frac{\pi}{2}$ if and only if $u \leq 0$, $v \leq 0$ and $u^2 + v^2 = 1$.

In our given equation, let $u = 6x$ and $v = 6\sqrt{3}x$.

For the sum of $\sin^{–1} 6x$ and $\sin^{–1} 6 \sqrt{3} x$ to be equal to $-\frac{\pi}{2}$, the conditions of this identity must be met.


Condition 1: $u \leq 0$ and $v \leq 0$.

$6x \leq 0 \implies x \leq 0$.

$6\sqrt{3} x \leq 0 \implies x \leq 0$.

Both inequalities require $x \leq 0$. Therefore, any solution must be non-positive.


Condition 2: $u^2 + v^2 = 1$.

Substitute $u = 6x$ and $v = 6\sqrt{3}x$ into this condition:

$(6x)^2 + (6\sqrt{3} x)^2 = 1$.

$36x^2 + (36 \times 3)x^2 = 1$.

$36x^2 + 108x^2 = 1$.

Combine the terms with $x^2$:

$144x^2 = 1$.

Solve for $x^2$:

$x^2 = \frac{1}{144}$.

Take the square root of both sides:

$x = \pm \sqrt{\frac{1}{144}} = \pm \frac{1}{12}$.


We found two potential values for $x$: $x = \frac{1}{12}$ and $x = -\frac{1}{12}$.

We must choose the value that satisfies the condition $x \leq 0$, which we derived from the identity.

The value $x = \frac{1}{12}$ is positive, so it does not satisfy $x \leq 0$.

The value $x = -\frac{1}{12}$ is negative, so it satisfies $x \leq 0$.


We also need to check if $x = -\frac{1}{12}$ is within the domain of the equation, which is $\left[-\frac{1}{6\sqrt{3}}, \frac{1}{6\sqrt{3}}\right]$.

We need to check if $-\frac{1}{6\sqrt{3}} \leq -\frac{1}{12} \leq \frac{1}{6\sqrt{3}}$.

This is equivalent to checking if $0 \leq \frac{1}{12} \leq \frac{1}{6\sqrt{3}}$.

Since $12 = 2 \times 6$ and $6\sqrt{3} = \sqrt{3} \times 6$, and $\sqrt{3} < 2$, we have $\frac{1}{\sqrt{3}} > \frac{1}{2}$.

Multiplying by $\frac{1}{6}$, $\frac{1}{6\sqrt{3}} > \frac{1}{12}$.

Thus, $\frac{1}{12} < \frac{1}{6\sqrt{3}}$, which confirms that $-\frac{1}{6\sqrt{3}} < -\frac{1}{12} \leq 0$. The value $x = -\frac{1}{12}$ is indeed within the domain.


Let's verify the solution $x = -\frac{1}{12}$ in the original equation:

Left Hand Side (L.H.S.) $= \sin^{–1} \left( 6 \times -\frac{1}{12} \right) + \sin^{–1} \left( 6 \sqrt{3} \times -\frac{1}{12} \right)$

L.H.S. $= \sin^{–1} \left( -\frac{1}{2} \right) + \sin^{–1} \left( -\frac{\sqrt{3}}{2} \right)$

L.H.S. $= -\frac{\pi}{6} + (-\frac{\pi}{3})$

L.H.S. $= -\frac{\pi}{6} - \frac{2\pi}{6}$

L.H.S. $= -\frac{3\pi}{6} = -\frac{\pi}{2}$.

This is equal to the Right Hand Side (R.H.S.) of the given equation.


The function $f(x) = \sin^{–1} 6x + \sin^{–1} 6 \sqrt{3} x$ is strictly increasing on its domain $\left[-\frac{1}{6\sqrt{3}}, \frac{1}{6\sqrt{3}}\right]$. A strictly increasing function can take any given value at most once.

Since we found one solution $x = -\frac{1}{12}$ within this domain, this solution must be unique.


Thus, the only value of $x$ that satisfies the equation is $x = -\frac{1}{12}$.

Example 20: Show that

$2\tan^{-1} \left\{ \tan \frac{α}{2} \;.\; \tan \left( \frac{π}{4} − \frac{β}{2} \right) \right\} = \tan^{-1} \frac{\sin α \cos β}{\cos α + \sin β}$

Answer:

To Show:

$2\tan^{-1} \left\{ \tan \frac{α}{2} \;.\; \tan \left( \frac{π}{4} − \frac{β}{2} \right) \right\} = \tan^{-1} \frac{\sin α \cos β}{\cos α + \sin β}$


Proof:

Consider the Left Hand Side (L.H.S.):

L.H.S. $= 2\tan^{-1} \left\{ \tan \frac{α}{2} \;.\; \tan \left( \frac{π}{4} − \frac{β}{2} \right) \right\}$

Let $A = \frac{\alpha}{2}$ and $B = \frac{\beta}{2}$. The L.H.S. becomes:

L.H.S. $= 2\tan^{-1} \left\{ \tan A \cdot \tan \left( \frac{π}{4} − B \right) \right\}$


We use the tangent subtraction formula for the term $\tan \left( \frac{π}{4} − B \right)$:

$\tan \left( \frac{π}{4} − B \right) = \frac{\tan \frac{π}{4} - \tan B}{1 + \tan \frac{π}{4} \tan B}$

Since $\tan \frac{π}{4} = 1$, we have:

$\tan \left( \frac{π}{4} − B \right) = \frac{1 - \tan B}{1 + \tan B}$


Substitute this back into the L.H.S.:

L.H.S. $= 2\tan^{-1} \left\{ \tan A \cdot \frac{1 - \tan B}{1 + \tan B} \right\}$

Let $y = \tan A \cdot \frac{1 - \tan B}{1 + \tan B}$. The L.H.S. is $2\tan^{-1} y$.

Using the formula $2\tan^{-1} y = \tan^{-1} \frac{2y}{1-y^2}$ (assuming conditions for the principal value hold), we get:

L.H.S. $= \tan^{-1} \left( \frac{2y}{1-y^2} \right)$

Let's calculate the expression $\frac{2y}{1-y^2}$ in terms of $\tan A$ and $\tan B$:

$\frac{2y}{1-y^2} = \frac{2 \left( \tan A \cdot \frac{1 - \tan B}{1 + \tan B} \right)}{1 - \left( \tan A \cdot \frac{1 - \tan B}{1 + \tan B} \right)^2}$

$= \frac{\frac{2 \tan A (1 - \tan B)}{1 + \tan B}}{1 - \frac{\tan^2 A (1 - \tan B)^2}{(1 + \tan B)^2}}$

$= \frac{\frac{2 \tan A (1 - \tan B)}{1 + \tan B}}{\frac{(1 + \tan B)^2 - \tan^2 A (1 - \tan B)^2}{(1 + \tan B)^2}}$

$= \frac{2 \tan A (1 - \tan B)}{1 + \tan B} \cdot \frac{(1 + \tan B)^2}{(1 + \tan B)^2 - \tan^2 A (1 - \tan B)^2}$

$= \frac{2 \tan A (1 - \tan B)(1 + \tan B)}{(1 + \tan B)^2 - \tan^2 A (1 - \tan B)^2}$

$= \frac{2 \tan A (1 - \tan^2 B)}{(1 + 2\tan B + \tan^2 B) - \tan^2 A (1 - 2\tan B + \tan^2 B)}$

$= \frac{2 \tan A (1 - \tan^2 B)}{1 + 2\tan B + \tan^2 B - \tan^2 A + 2\tan^2 A \tan B - \tan^2 A \tan^2 B}$

Rearrange the denominator terms:

$= \frac{2 \tan A (1 - \tan^2 B)}{(1 - \tan^2 A) + (\tan^2 B - \tan^2 A \tan^2 B) + (2\tan B + 2\tan^2 A \tan B)}$

$= \frac{2 \tan A (1 - \tan^2 B)}{(1 - \tan^2 A)(1 + \tan^2 B) + 2\tan B (1 + \tan^2 A)}$


Now, let's consider the Right Hand Side (R.H.S.) argument in terms of $A = \alpha/2$ and $B = \beta/2$.

R.H.S. argument $= \frac{\sin α \cos β}{\cos α + \sin β}$

We use the half-angle formulas for sine and cosine in terms of tangent:

$\sin \alpha = \frac{2 \tan A}{1 + \tan^2 A}$

$\cos \alpha = \frac{1 - \tan^2 A}{1 + \tan^2 A}$

$\sin \beta = \frac{2 \tan B}{1 + \tan^2 B}$

$\cos \beta = \frac{1 - \tan^2 B}{1 + \tan^2 B}$

Substitute these into the R.H.S. argument:

Numerator: $\sin \alpha \cos \beta = \left( \frac{2 \tan A}{1 + \tan^2 A} \right) \left( \frac{1 - \tan^2 B}{1 + \tan^2 B} \right) = \frac{2 \tan A (1 - \tan^2 B)}{(1 + \tan^2 A)(1 + \tan^2 B)}$

Denominator: $\cos α + \sin β = \left( \frac{1 - \tan^2 A}{1 + \tan^2 A} \right) + \left( \frac{2 \tan B}{1 + \tan^2 B} \right)$

Denominator $= \frac{(1 - \tan^2 A)(1 + \tan^2 B) + 2 \tan B (1 + \tan^2 A)}{(1 + \tan^2 A)(1 + \tan^2 B)}$

R.H.S. argument $= \frac{\frac{2 \tan A (1 - \tan^2 B)}{(1 + \tan^2 A)(1 + \tan^2 B)}}{\frac{(1 - \tan^2 A)(1 + \tan^2 B) + 2 \tan B (1 + \tan^2 A)}{(1 + \tan^2 A)(1 + \tan^2 B)}}$

R.H.S. argument $= \frac{2 \tan A (1 - \tan^2 B)}{(1 - \tan^2 A)(1 + \tan^2 B) + 2 \tan B (1 + \tan^2 A)}$


Comparing the argument of $\tan^{-1}$ obtained from the L.H.S. calculation and the R.H.S. argument, we see they are identical:

Argument from L.H.S. $= \frac{2 \tan A (1 - \tan^2 B)}{(1 - \tan^2 A)(1 + \tan^2 B) + 2 \tan B (1 + \tan^2 A)}$

Argument from R.H.S. $= \frac{2 \tan A (1 - \tan^2 B)}{(1 - \tan^2 A)(1 + \tan^2 B) + 2 \tan B (1 + \tan^2 A)}$

Since the arguments are equal, their principal values of the inverse tangent are also equal.

Therefore,

$2\tan^{-1} \left\{ \tan \frac{α}{2} \;.\; \tan \left( \frac{π}{4} − \frac{β}{2} \right) \right\} = \tan^{-1} \frac{\sin α \cos β}{\cos α + \sin β}$

Hence Showed.

Example 21 to 41 (Multiple Choice Questions)

Choose the correct answer from the given four options in each of the Examples 21 to 41.

Example 21: Which of the following corresponds to the principal value branch of tan–1?

(A) $\left( −\frac{π}{2}, \frac{π}{2} \right)$

(B) $\left[ −\frac{π}{2}, \frac{π}{2} \right]$

(C) $\left( −\frac{π}{2}, \frac{π}{2} \right) - {0}$

(D) (0, π)

Answer:

The principal value branch of $\tan^{-1} x$ is the range of the function, which is the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$.


The tangent function $\tan x$ is defined for all real numbers except for $x = n\pi + \frac{\pi}{2}$, where $n$ is an integer.

To define the inverse function $\tan^{-1} x$, we restrict the domain of $\tan x$ to an interval where it is one-to-one and covers its entire range $(-\infty, \infty)$.

The standard principal value branch for $\tan^{-1} x$ is obtained by restricting the domain of $\tan x$ to the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$. In this interval, $\tan x$ is strictly increasing and its range is $(-\infty, \infty)$.

Therefore, the range of $\tan^{-1} x$, which is its principal value branch, is $(-\frac{\pi}{2}, \frac{\pi}{2})$.


Comparing this with the given options:

(A) $(-\frac{\pi}{2}, \frac{\pi}{2})$ - This matches the standard definition.

(B) $[-\frac{\pi}{2}, \frac{\pi}{2}]$ - This includes the endpoints, where $\tan x$ is undefined. Thus, $\tan^{-1} x$ cannot attain these values.

(C) $(-\frac{\pi}{2}, \frac{\pi}{2}) - \{0\}$ - This excludes 0. $\tan^{-1} 0 = 0$, so 0 is part of the range.

(D) $(0, \pi)$ - This is the principal value branch of $\cot^{-1} x$.


The correct principal value branch of $\tan^{-1}$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$.


The correct option is (A).

Example 22: The principal value branch of sec–1 is

(A) $\left[ −\frac{π}{2}, \frac{π}{2} \right] - \text{{0}}$

(B) $[0, π] - \left\{ \frac{π}{2} \right\}$

(C) (0, π)

(D) $\left( −\frac{π}{2}, \frac{π}{2} \right)$

Answer:

The function $\sec^{-1} x$ is the inverse of the secant function. To define $\sec^{-1} x$, we restrict the domain of $\sec x$ to an interval where it is one-to-one and covers its range $(-\infty, -1] \cup [1, \infty)$.


The secant function $\sec x = \frac{1}{\cos x}$ is defined for all real numbers except $x = n\pi + \frac{\pi}{2}$, where $n$ is an integer.

The standard principal value branch for $\sec^{-1} x$ is obtained by restricting the domain of $\sec x$ to the interval $[0, \pi]$ excluding the point where $\cos x = 0$, which is $x = \frac{\pi}{2}$.

In the interval $[0, \pi] - \{\frac{\pi}{2}\}$, the secant function is one-to-one and its range is $(-\infty, -1] \cup [1, \infty)$.

Therefore, the range of $\sec^{-1} x$, which is its principal value branch, is $[0, \pi] - \{\frac{\pi}{2}\}$.


Let's examine the given options:

(A) $[-\frac{\pi}{2}, \frac{\pi}{2}] - \{0\}$ is the principal value branch of $\csc^{-1} x$.

(B) $[0, \pi] - \{\frac{\pi}{2}\}$ is the standard principal value branch of $\sec^{-1} x$.

(C) $(0, \pi)$ is the principal value branch of $\cot^{-1} x$.

(D) $(-\frac{\pi}{2}, \frac{\pi}{2})$ is the principal value branch of $\tan^{-1} x$.


The correct principal value branch of $\sec^{–1}$ is $[0, π] - \left\{ \frac{π}{2} \right\}$.


The correct option is (B).

Example 23: One branch of cos–1 other than the principal value branch corresponds to

(A) $\left[ \frac{π}{2}, \frac{3π}{2} \right]$

(B) $[π, 2π] - \left\{ \frac{3π}{2} \right\}$

(C) (0, π)

(D) [2π, 3π]

Answer:

The principal value branch of $\cos^{–1} x$ is the interval $[0, \pi]$. This is the range of the principal value function $\cos^{-1} : [-1, 1] \to [0, \pi]$.


A branch of $\cos^{–1} x$ is an interval $[a, b]$ such that the restriction of the cosine function to this interval is one-to-one and its range is $[-1, 1]$. The interval $[a, b]$ then becomes the range of the corresponding branch of $\cos^{-1}$.

The cosine function $\cos x$ is periodic with period $2\pi$. It is monotonic (either increasing or decreasing) over intervals of length $\pi$.

The standard intervals used as branches for $\cos x$ (and hence the range of $\cos^{-1} x$ branches) are of the form $[n\pi, (n+1)\pi]$, where $n$ is an integer.


Let's examine the options:

(A) $[\frac{\pi}{2}, \frac{3\pi}{2}]$: In this interval, $\cos x$ decreases from 0 to -1 (on $[\frac{\pi}{2}, \pi]$) and then increases from -1 to 0 (on $[\pi, \frac{3\pi}{2}]$). It is not one-to-one and its range is $[-1, 0]$. This is not a branch.

(B) $[π, 2π] - \left\{ \frac{3π}{2} \right\}$: The interval $[\pi, 2\pi]$ is a branch where $\cos x$ increases from -1 to 1. The range of $\cos^{-1} x$ for this branch is $[\pi, 2\pi]$. The exclusion of $\frac{3\pi}{2}$ from the range means the value 0 (since $\cos(\frac{3\pi}{2}) = 0$) would not be in the range of $\cos^{-1}$. This option does not represent a standard branch covering the full domain $[-1, 1]$.

(C) (0, π): This is the principal value branch of $\cot^{-1} x$. Although it has the same length as the principal branch of $\cos^{-1}$, it is not a branch of $\cos^{-1}$.

(D) $[2π, 3π]$: In this interval, $\cos x$ decreases from $\cos 2\pi = 1$ to $\cos 3\pi = -1$. It is one-to-one and its range is $[-1, 1]$. Thus, $[2\pi, 3\pi]$ is a valid branch for $\cos x$ to define $\cos^{-1} x$. The range of $\cos^{-1} x$ for this branch is $[2π, 3π]$.


The principal value branch of $\cos^{-1}$ is $[0, \pi]$. Option (D) $[2\pi, 3π]$ is a branch of $\cos^{-1}$ which is different from the principal value branch.


The correct option is (D).

Example 24: The value of $\sin^{-1} \left( \cos \left( \frac{43\pi}{5} \right) \right)$ is

(A) $\frac{3π}{5}$

(B) $\frac{−7π}{5}$

(C) $\frac{π}{10}$

(D) $-\frac{π}{10}$

Answer:

We need to find the value of $\sin^{-1} \left( \cos \left( \frac{43\pi}{5} \right) \right)$.


First, let's simplify the argument of the cosine function: $\frac{43\pi}{5}$.

We can write $\frac{43\pi}{5}$ as a mixed number times $\pi$:

$\frac{43}{5} = \frac{40+3}{5} = 8 + \frac{3}{5}$.

So, $\frac{43\pi}{5} = 8\pi + \frac{3\pi}{5}$.


Now, evaluate $\cos \left( \frac{43\pi}{5} \right)$. Using the periodicity of the cosine function ($\cos(2n\pi + \theta) = \cos \theta$, where $n$ is an integer):

$\cos \left( \frac{43\pi}{5} \right) = \cos \left( 8\pi + \frac{3\pi}{5} \right)$.

Here, $n=4$, so $\cos \left( 8\pi + \frac{3\pi}{5} \right) = \cos \left( \frac{3\pi}{5} \right)$.


The expression becomes $\sin^{-1} \left( \cos \left( \frac{3\pi}{5} \right) \right)$.

We know the identity $\cos \theta = \sin \left( \frac{\pi}{2} - \theta \right)$.

Using this identity with $\theta = \frac{3\pi}{5}$:

$\cos \left( \frac{3\pi}{5} \right) = \sin \left( \frac{\pi}{2} - \frac{3\pi}{5} \right)$.

Calculate the argument of sine:

$\frac{\pi}{2} - \frac{3\pi}{5} = \frac{5\pi - 6\pi}{10} = -\frac{\pi}{10}$.

So, $\cos \left( \frac{3\pi}{5} \right) = \sin \left( -\frac{\pi}{10} \right)$.


The original expression is now $\sin^{-1} \left( \sin \left( -\frac{\pi}{10} \right) \right)$.

The principal value branch of $\sin^{-1} y$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

We need to check if the angle $-\frac{\pi}{10}$ is within this range.

$-\frac{\pi}{2} = -\frac{5\pi}{10}$.

Since $-\frac{5\pi}{10} \leq -\frac{\pi}{10} \leq \frac{5\pi}{10}$, the angle $-\frac{\pi}{10}$ is within the principal value branch $[-\frac{\pi}{2}, \frac{\pi}{2}]$.


Using the property $\sin^{-1} (\sin \theta) = \theta$ for $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, we have:

$\sin^{-1} \left( \sin \left( -\frac{\pi}{10} \right) \right) = -\frac{\pi}{10}$.


The value of the expression is $-\frac{\pi}{10}$.


Comparing with the options:

(A) $\frac{3π}{5}$

(B) $\frac{−7π}{5}$

(C) $\frac{π}{10}$

(D) $-\frac{π}{10}$

The correct option is (D).

Example 25: The principal value of the expression cos–1 [cos (– 680°)] is

(A) $\frac{2π}{9}$

(B) $\frac{−2π}{9}$

(C) $\frac{34π}{9}$

(D) $\frac{π}{9}$

Answer:

To Find: The principal value of $\cos^{–1} [\cos (– 680°)]$.


Solution:

We need to find the principal value of $\cos^{–1} (\cos (– 680°))$.

The principal value branch of $\cos^{–1} x$ is $[0, \pi]$ (or $[0^\circ, 180^\circ]$).


First, evaluate the argument of the outer inverse cosine function: $\cos (– 680°)$.

Since the cosine function is an even function, $\cos(-\theta) = \cos(\theta)$.

$\cos (– 680°) = \cos (680°)$.


Next, reduce the angle $680°$ to an angle within the range $[0^\circ, 360^\circ)$ using the periodicity of the cosine function ($\cos(\theta + 360^\circ n) = \cos(\theta)$ for integer $n$).

$680° = 1 \times 360° + 320°$.

So, $\cos (680°) = \cos (360° + 320°) = \cos (320°)$.


The expression is now $\cos^{–1} (\cos (320°))$.

The angle $320°$ is not in the principal value branch of $\cos^{–1}$, which is $[0^\circ, 180^\circ]$.

We need to find an angle $\theta \in [0^\circ, 180^\circ]$ such that $\cos \theta = \cos (320°)$.

The angle $320°$ is in the fourth quadrant ($270^\circ < 320^\circ < 360^\circ$). In the fourth quadrant, the cosine is positive.

The reference angle for $320°$ is $360° - 320° = 40°$.

Using the identity $\cos(360^\circ - \theta) = \cos \theta$, we have $\cos(320^\circ) = \cos(360^\circ - 40^\circ) = \cos(40°)$.


The expression becomes $\cos^{–1} (\cos (40°))$.

The angle $40°$ is in the principal value branch of $\cos^{–1}$ because $0^\circ \leq 40^\circ \leq 180^\circ$.

Using the property $\cos^{–1} (\cos \theta) = \theta$ for $\theta \in [0^\circ, 180^\circ]$, we get:

$\cos^{–1} (\cos (40°)) = 40°$.


Finally, convert the angle from degrees to radians. We know that $180^\circ = \pi$ radians.

$40° = 40 \times \frac{\pi}{180}$ radians.

$40° = \frac{40}{180}\pi = \frac{4}{18}\pi = \frac{2}{9}\pi$ radians.


The principal value of $\cos^{–1} [\cos (– 680°)]$ is $\frac{2\pi}{9}$.


Comparing with the given options:

(A) $\frac{2π}{9}$

(B) $\frac{−2π}{9}$

(C) $\frac{34π}{9}$

(D) $\frac{π}{9}$

The correct option is (A).

Example 26: The value of cot (sin–1 x) is

(A) $\frac{\sqrt{1 + x^2}}{x}$

(B) $\frac{x}{\sqrt{1 + x^2}}$

(C) $\frac{1}{x}$

(D) $\frac{\sqrt{1 − x^2}}{x}$

Answer:

We want to find the value of $\cot (\sin^{–1} x)$.


Let $\theta = \sin^{–1} x$.

By the definition of the inverse sine function, this means $\sin \theta = x$.

The principal value branch of $\sin^{-1} x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$. So, $\theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.

Also, for $\sin^{-1} x$ to be defined, $x$ must be in the interval $[-1, 1]$.


We need to find $\cot \theta$. We know that $\cot \theta = \frac{\cos \theta}{\sin \theta}$.

We already have $\sin \theta = x$.

Using the identity $\sin^2 \theta + \cos^2 \theta = 1$, we can find $\cos \theta$:

$\cos^2 \theta = 1 - \sin^2 \theta = 1 - x^2$.

So, $\cos \theta = \pm \sqrt{1 - x^2}$.


We need to determine the sign of $\cos \theta$. The range of $\theta = \sin^{-1} x$ is $[-\frac{\pi}{2}, \frac{\pi}{2}]$.

In the interval $[-\frac{\pi}{2}, \frac{\pi}{2}]$, the cosine function is non-negative, i.e., $\cos \theta \geq 0$.

Therefore, $\cos \theta = \sqrt{1 - x^2}$.


Now substitute the values of $\sin \theta$ and $\cos \theta$ into the expression for $\cot \theta$:

$\cot \theta = \frac{\sqrt{1 - x^2}}{x}$.

Thus, $\cot (\sin^{–1} x) = \frac{\sqrt{1 - x^2}}{x}$.

Note that this expression is defined when $x \neq 0$. If $x=0$, $\sin^{-1} 0 = 0$, and $\cot(0)$ is undefined. This is consistent with the resulting expression.


Comparing with the given options:

(A) $\frac{\sqrt{1 + x^2}}{x}$

(B) $\frac{x}{\sqrt{1 + x^2}}$

(C) $\frac{1}{x}$

(D) $\frac{\sqrt{1 − x^2}}{x}$

The correct option is (D).

Example 27: If $\tan^{–1} x = \frac{π}{10}$ for some x ∈ R, then the value of cot–1 x is

(A) $\frac{π}{5}$

(B) $\frac{2π}{5}$

(C) $\frac{3π}{5}$

(D) $\frac{4π}{5}$

Answer:

To Find: The value of $\cot^{-1} x$ given that $\tan^{–1} x = \frac{π}{10}$.


Solution:

The given information is $\tan^{–1} x = \frac{π}{10}$ for some $x \in \text{R}$.


We use the identity relating $\tan^{–1} x$ and $\cot^{–1} x$, which is:

$\tan^{–1} x + \cot^{–1} x = \frac{π}{2}$

This identity is valid for all real numbers $x$.


Substitute the given value of $\tan^{–1} x = \frac{π}{10}$ into the identity:

$\frac{π}{10} + \cot^{–1} x = \frac{π}{2}$


Now, solve for $\cot^{–1} x$:

$\cot^{–1} x = \frac{π}{2} - \frac{π}{10}$

To subtract the fractions on the right-hand side, we find a common denominator, which is 10:

$\cot^{–1} x = \frac{5\pi}{10} - \frac{π}{10}$

Perform the subtraction:

$\cot^{–1} x = \frac{5\pi - π}{10}$

$\cot^{–1} x = \frac{4π}{10}$

Simplify the fraction:

$\cot^{–1} x = \frac{2π}{5}$


Comparing our result with the given options:

(A) $\frac{π}{5}$

(B) $\frac{2π}{5}$

(C) $\frac{3π}{5}$

(D) $\frac{4π}{5}$

The calculated value $\frac{2π}{5}$ matches option (B).


The correct option is (B).

Example 28: The domain of sin–1 2x is

(A) [0, 1]

(B) [– 1, 1]

(C) $\left[ −\frac{1}{2}, \frac{1}{2} \right]$

(D) [–2, 2]

Answer:

To Find: The domain of $\sin^{–1} 2x$.


Solution:

The domain of the standard inverse sine function, $\sin^{–1} u$, is the interval $[-1, 1]$.

This means that for $\sin^{–1} u$ to be defined, the argument $u$ must satisfy $-1 \leq u \leq 1$.

In the given function, the argument is $2x$.

Therefore, for $\sin^{–1} 2x$ to be defined, the argument $2x$ must satisfy:

$-1 \leq 2x \leq 1$


To find the values of $x$ that satisfy this inequality, we divide all parts of the inequality by 2:

$\frac{-1}{2} \leq \frac{2x}{2} \leq \frac{1}{2}$

$-\frac{1}{2} \leq x \leq \frac{1}{2}$


Thus, the values of $x$ for which the function $\sin^{–1} 2x$ is defined are those in the interval $[-\frac{1}{2}, \frac{1}{2}]$.

The domain of $\sin^{–1} 2x$ is $\left[ -\frac{1}{2}, \frac{1}{2} \right]$.


Comparing our result with the given options:

(A) [0, 1]

(B) [– 1, 1]

(C) $\left[ −\frac{1}{2}, \frac{1}{2} \right]$

(D) [–2, 2]

The domain $[-\frac{1}{2}, \frac{1}{2}]$ matches option (C).


The correct option is (C).

Example 29: The principal value of $\sin^{–1} \left( \frac{-\sqrt{3}}{2} \right)$ is

(A) $-\frac{2π}{3}$

(B) $-\frac{π}{3}$

(C) $\frac{4π}{3}$

(D) $\frac{5π}{3}$

Answer:

To Find: The principal value of $\sin^{–1} \left( \frac{-\sqrt{3}}{2} \right)$.


Solution:

Let $\theta = \sin^{–1} \left( \frac{-\sqrt{3}}{2} \right)$.

By the definition of the inverse sine function, we are looking for the angle $\theta$ such that $\sin \theta = \frac{-\sqrt{3}}{2}$ and $\theta$ lies in the principal value branch of $\sin^{–1}$, which is the interval $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$.


We know that $\sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2}$.

Since $\sin \theta$ is negative, the angle $\theta$ must be in a quadrant where sine is negative. The principal value branch $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$ includes angles in the fourth quadrant where sine is negative.

We use the property $\sin^{-1} (-x) = -\sin^{-1} x$ for $x \in [-1, 1]$.

Applying this property:

$\sin^{–1} \left( \frac{-\sqrt{3}}{2} \right) = -\sin^{–1} \left( \frac{\sqrt{3}}{2} \right)$.


Now, we find the principal value of $\sin^{–1} \left( \frac{\sqrt{3}}{2} \right)$. This is the angle in $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$ whose sine is $\frac{\sqrt{3}}{2}$.

We know that $\sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2}$, and $\frac{\pi}{3}$ is in the interval $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$.

So, $\sin^{–1} \left( \frac{\sqrt{3}}{2} \right) = \frac{\pi}{3}$.


Substitute this back into the expression:

$\sin^{–1} \left( \frac{-\sqrt{3}}{2} \right) = - \left( \frac{\pi}{3} \right) = -\frac{\pi}{3}$.

The value $-\frac{\pi}{3}$ is in the principal value branch $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$, since $-\frac{\pi}{2} \leq -\frac{\pi}{3} \leq \frac{\pi}{2}$.


Comparing our result with the given options:

(A) $-\frac{2π}{3}$

(B) $-\frac{π}{3}$

(C) $\frac{4π}{3}$

(D) $\frac{5π}{3}$

The principal value $-\frac{\pi}{3}$ matches option (B).


The correct option is (B).

Example 30: The greatest and least values of (sin–1 x)2 + (cos–1 x)2 are respectively

(A) $\frac{5π^2}{4}$ and $\frac{π^2}{8}$

(B) $\frac{π}{2}$ and $\frac{−π}{2}$

(C) $\frac{π^2}{4}$ and $\frac{−π^2}{4}$

(D) $\frac{π^2}{4}$ and 0.

Answer:

To Find: The greatest and least values of $(\sin^{–1} x)^2 + (\cos^{–1} x)^2$.


Solution:

The expression is $E = (\sin^{–1} x)^2 + (\cos^{–1} x)^2$.

The domain of both $\sin^{–1} x$ and $\cos^{–1} x$ is $[-1, 1]$. Thus, the expression is defined for $x \in [-1, 1]$.


We use the identity $\sin^{–1} x + \cos^{–1} x = \frac{π}{2}$ for $x \in [-1, 1]$.

From this identity, we can write $\cos^{–1} x = \frac{π}{2} - \sin^{–1} x$.


Substitute this into the expression $E$:

$E = (\sin^{–1} x)^2 + \left(\frac{π}{2} - \sin^{–1} x\right)^2$.


Let $y = \sin^{–1} x$. Since $x \in [-1, 1]$, the range of $\sin^{–1} x$ is $\left[ -\frac{π}{2}, \frac{π}{2} \right]$.

So, $y \in \left[ -\frac{π}{2}, \frac{π}{2} \right]$.

The expression becomes a function of $y$:

$f(y) = y^2 + \left(\frac{π}{2} - y\right)^2$.


Expand the expression for $f(y)$:

$f(y) = y^2 + \left(\frac{π}{2}\right)^2 - 2 \left(\frac{π}{2}\right) y + y^2$.

$f(y) = y^2 + \frac{π^2}{4} - π y + y^2$.

$f(y) = 2y^2 - π y + \frac{π^2}{4}$.


This is a quadratic function of $y$ in the form $ay^2 + by + c$, with $a=2$, $b=-\pi$, and $c=\frac{\pi^2}{4}$. The parabola opens upwards since $a=2 > 0$.

We need to find the greatest and least values of $f(y)$ on the closed interval $\left[ -\frac{π}{2}, \frac{π}{2} \right]$.

The vertex of the parabola occurs at $y = -\frac{b}{2a} = -\frac{-π}{2(2)} = \frac{π}{4}$.


The vertex $y = \frac{π}{4}$ lies within the interval $\left[ -\frac{π}{2}, \frac{π}{2} \right]$, because $-\frac{\pi}{2} \approx -1.57$, $\frac{\pi}{4} \approx 0.785$, and $\frac{\pi}{2} \approx 1.57$. Thus, $-\frac{π}{2} < \frac{π}{4} < \frac{π}{2}$.

For an upward-opening parabola on a closed interval, the minimum value occurs at the vertex if the vertex is in the interval, and the maximum value occurs at one of the endpoints.


Calculate the value at the vertex $y = \frac{π}{4}$:

$f\left(\frac{π}{4}\right) = 2\left(\frac{π}{4}\right)^2 - π\left(\frac{π}{4}\right) + \frac{π^2}{4}$.

$f\left(\frac{π}{4}\right) = 2\left(\frac{π^2}{16}\right) - \frac{π^2}{4} + \frac{π^2}{4}$.

$f\left(\frac{π}{4}\right) = \frac{π^2}{8} - \frac{π^2}{4} + \frac{π^2}{4}$.

$f\left(\frac{π}{4}\right) = \frac{π^2}{8}$.

This is the least value of the expression.


Calculate the values at the endpoints of the interval $\left[ -\frac{π}{2}, \frac{π}{2} \right]$:

At $y = -\frac{π}{2}$:

$f\left(-\frac{π}{2}\right) = 2\left(-\frac{π}{2}\right)^2 - π\left(-\frac{π}{2}\right) + \frac{π^2}{4}$.

$f\left(-\frac{π}{2}\right) = 2\left(\frac{π^2}{4}\right) + \frac{π^2}{2} + \frac{π^2}{4}$.

$f\left(-\frac{π}{2}\right) = \frac{π^2}{2} + \frac{π^2}{2} + \frac{π^2}{4} = π^2 + \frac{π^2}{4} = \frac{4π^2 + π^2}{4} = \frac{5π^2}{4}$.

At $y = \frac{π}{2}$:

$f\left(\frac{π}{2}\right) = 2\left(\frac{π}{2}\right)^2 - π\left(\frac{π}{2}\right) + \frac{π^2}{4}$.

$f\left(\frac{π}{2}\right) = 2\left(\frac{π^2}{4}\right) - \frac{π^2}{2} + \frac{π^2}{4}$.

$f\left(\frac{π}{2}\right) = \frac{π^2}{2} - \frac{π^2}{2} + \frac{π^2}{4} = \frac{π^2}{4}$.


Comparing the values at the endpoints, $\frac{5π^2}{4}$ and $\frac{π^2}{4}$, the greatest value is $\frac{5π^2}{4}$.

So, the greatest value is $\frac{5π^2}{4}$ and the least value is $\frac{π^2}{8}$.


These values correspond to the given options:

(A) $\frac{5π^2}{4}$ and $\frac{π^2}{8}$ - Matches our result.

(B) $\frac{π}{2}$ and $\frac{−π}{2}$ - Incorrect.

(C) $\frac{π^2}{4}$ and $\frac{−π^2}{4}$ - Incorrect.

(D) $\frac{π^2}{4}$ and 0. - Incorrect.


The correct option is (A).

Example 31: Let θ = sin–1 (sin (– 600°), then value of θ is

(A) $\frac{π}{3}$

(B) $\frac{π}{2}$

(C) $\frac{2π}{3}$

(D) $\frac{−2π}{3}$

Answer:

To Find: The value of $\theta = \sin^{–1} (\sin (– 600°))$.


Solution:

We need to find the principal value of $\sin^{–1} (\sin (– 600°))$.

The principal value branch of $\sin^{–1} x$ is the interval $\left[ -\frac{π}{2}, \frac{π}{2} \right]$, which is equivalent to $[-90^\circ, 90^\circ]$. The result $\theta$ must lie in this interval.


First, let's evaluate the argument inside the inverse sine function: $\sin (– 600°)$.

Using the property $\sin (-\phi) = -\sin \phi$, we have:

$\sin (– 600°) = -\sin (600°)$.


Now, we need to evaluate $\sin (600°)$. We can use the periodicity of the sine function, which is $360°$.

$600° = 1 \times 360° + 240°$.

So, $\sin (600°) = \sin (360° + 240°) = \sin (240°)$.


The angle $240°$ is in the third quadrant ($180° < 240° < 270°$). In the third quadrant, the sine function is negative.

We can write $\sin (240°)$ in terms of an angle in the first quadrant using the identity $\sin (180° + \phi) = -\sin \phi$.

$240° = 180° + 60°$.

So, $\sin (240°) = \sin (180° + 60°) = -\sin (60°)$.

We know that $\sin (60°) = \frac{\sqrt{3}}{2}$.

Therefore, $\sin (240°) = -\frac{\sqrt{3}}{2}$.


Substitute this back into the original expression:

$\theta = \sin^{–1} (\sin (– 600°)) = \sin^{–1} (-\sin (600°)) = \sin^{–1} \left( -\left(-\frac{\sqrt{3}}{2}\right) \right) = \sin^{–1} \left( \frac{\sqrt{3}}{2} \right)$.


Now, we need to find the principal value of $\sin^{–1} \left( \frac{\sqrt{3}}{2} \right)$. This is the angle $\theta$ in the interval $\left[ -\frac{π}{2}, \frac{π}{2} \right]$ such that $\sin \theta = \frac{\sqrt{3}}{2}$.

We know that $\sin \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{2}$.

The angle $\frac{\pi}{3}$ (which is $60°$) lies within the principal value branch $\left[ -\frac{π}{2}, \frac{π}{2} \right]$ (since $-\frac{\pi}{2} \leq \frac{\pi}{3} \leq \frac{\pi}{2}$).

Therefore, $\theta = \sin^{–1} \left( \frac{\sqrt{3}}{2} \right) = \frac{\pi}{3}$.


Comparing our result with the given options:

(A) $\frac{π}{3}$

(B) $\frac{π}{2}$

(C) $\frac{2π}{3}$

(D) $\frac{−2π}{3}$

The calculated value $\frac{\pi}{3}$ matches option (A).


The correct option is (A).

Example 32: The domain of the function y = sin–1 (– x2) is

(A) [0, 1]

(B) (0, 1)

(C) [–1, 1]

(D) φ

Answer:

To Find: The domain of the function $y = \sin^{–1} (– x^2)$.


Solution:

The domain of the inverse sine function, $\sin^{–1} u$, is the interval $[-1, 1]$. This means that the argument of the inverse sine function must be between -1 and 1, inclusive.


In the given function $y = \sin^{–1} (– x^2)$, the argument is $-x^2$.

For the function to be defined, the argument $-x^2$ must satisfy the inequality:

$-1 \leq -x^2 \leq 1$


We can split this compound inequality into two separate inequalities:

1) $-x^2 \leq 1$

2) $-1 \leq -x^2$


Consider the first inequality: $-x^2 \leq 1$.

Multiply both sides by -1 and reverse the inequality sign:

$x^2 \geq -1$.

Since the square of any real number $x$ is always non-negative ($x^2 \geq 0$), and $0 \geq -1$, the inequality $x^2 \geq -1$ is true for all real numbers $x \in \text{R}$.


Consider the second inequality: $-1 \leq -x^2$.

Multiply both sides by -1 and reverse the inequality sign:

$1 \geq x^2$, which is equivalent to $x^2 \leq 1$.

To solve $x^2 \leq 1$, we take the square root of both sides:

$\sqrt{x^2} \leq \sqrt{1}$

$|x| \leq 1$.

This inequality $|x| \leq 1$ is equivalent to $-1 \leq x \leq 1$. The values of $x$ satisfying this are in the interval $[-1, 1]$.


For the function $y = \sin^{–1} (– x^2)$ to be defined, $x$ must satisfy both inequalities. The set of values of $x$ is the intersection of the solutions to the two inequalities.

The first inequality ($x^2 \geq -1$) is satisfied for all $x \in \text{R}$.

The second inequality ($x^2 \leq 1$) is satisfied for $x \in [-1, 1]$.

The intersection of these two sets is $\text{R} \cap [-1, 1] = [-1, 1]$.


Therefore, the domain of the function $y = \sin^{–1} (– x^2)$ is $[-1, 1]$.


Comparing our result with the given options:

(A) [0, 1]

(B) (0, 1)

(C) [–1, 1]

(D) φ

The domain $[-1, 1]$ matches option (C).


The correct option is (C).

Example 33: The domain of y = cos–1 (x2 – 4) is

(A) [3, 5]

(B) [0, π]

(C) $[−\sqrt{5}, −\sqrt{3}] ∩ [−\sqrt{5},\sqrt{3}]$

(D) $[−\sqrt{5}, −\sqrt{3}] ∪ [\sqrt{3}, \sqrt{5}]$

Answer:

To Find: The domain of the function $y = \cos^{–1} (x^2 – 4)$.


Solution:

The domain of the standard inverse cosine function, $\cos^{–1} u$, is the interval $[-1, 1]$. This means that for $\cos^{–1} u$ to be defined, the argument $u$ must satisfy $-1 \leq u \leq 1$.


In the given function $y = \cos^{–1} (x^2 – 4)$, the argument is $x^2 – 4$.

For the function to be defined, the argument $x^2 – 4$ must satisfy the inequality:

$-1 \leq x^2 – 4 \leq 1$


We can split this compound inequality into two separate inequalities:

1) $-1 \leq x^2 – 4$

2) $x^2 – 4 \leq 1$


Consider the first inequality: $-1 \leq x^2 – 4$.

Add 4 to all parts of the inequality:

$-1 + 4 \leq x^2 – 4 + 4$

$3 \leq x^2$

Or, $x^2 \geq 3$.

Taking the square root of both sides gives $|x| \geq \sqrt{3}$.

This inequality holds when $x \leq -\sqrt{3}$ or $x \geq \sqrt{3}$.

In interval notation, the solution is $(-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty)$.


Consider the second inequality: $x^2 – 4 \leq 1$.

Add 4 to all parts of the inequality:

$x^2 – 4 + 4 \leq 1 + 4$

$x^2 \leq 5$.

Taking the square root of both sides gives $|x| \leq \sqrt{5}$.

This inequality holds when $-\sqrt{5} \leq x \leq \sqrt{5}$.

In interval notation, the solution is $[-\sqrt{5}, \sqrt{5}]$.


The domain of the function is the set of values of $x$ that satisfy both inequalities. We need to find the intersection of the two solution sets:

Domain $= \left( (-\infty, -\sqrt{3}] \cup [\sqrt{3}, \infty) \right) \cap [-\sqrt{5}, \sqrt{5}]$.

The intersection of these intervals is:

$[-\sqrt{5}, -\sqrt{3}]$ from the left side, and $[\sqrt{3}, \sqrt{5}]$ from the right side.

The domain is the union of these two intervals: $[-\sqrt{5}, -\sqrt{3}] \cup [\sqrt{3}, \sqrt{5}]$.


Comparing our result with the given options:

(A) [3, 5] - Incorrect.

(B) [0, π] - Incorrect (This is the range of $\cos^{-1} x$).

(C) $[−\sqrt{5}, −\sqrt{3}] ∩ [−\sqrt{5},\sqrt{3}]$ - Incorrect (This simplifies to $[-\sqrt{5}, -\sqrt{3}]$).

(D) $[−\sqrt{5}, −\sqrt{3}] ∪ [\sqrt{3}, \sqrt{5}]$ - Matches our calculated domain.


The correct option is (D).

Example 34: The domain of the function defined by f (x) = sin–1 x + cos x is

(A) [–1, 1]

(B) [–1, π + 1]

(C) ( –∞, ∞)

(D) φ

Answer:

To Find: The domain of the function $f(x) = \sin^{–1} x + \cos x$.


Solution:

The domain of a function that is the sum of two functions, say $f(x) = g(x) + h(x)$, is the intersection of the domain of $g(x)$ and the domain of $h(x)$.

In this case, $g(x) = \sin^{–1} x$ and $h(x) = \cos x$.


The domain of the function $g(x) = \sin^{–1} x$ is the set of values of $x$ for which $\sin^{–1} x$ is defined.

The domain of $\sin^{–1} x$ is $[-1, 1]$.


The domain of the function $h(x) = \cos x$ is the set of values of $x$ for which $\cos x$ is defined.

The cosine function is defined for all real numbers.

The domain of $\cos x$ is $(-\infty, \infty)$, or $\text{R}$.


The domain of $f(x) = \sin^{–1} x + \cos x$ is the intersection of the domain of $\sin^{–1} x$ and the domain of $\cos x$.

Domain$(f) =$ Domain$(\sin^{–1} x) \cap$ Domain$(\cos x)$.

Domain$(f) = [-1, 1] \cap (-\infty, \infty)$.


The intersection of the interval $[-1, 1]$ and the set of all real numbers $(-\infty, \infty)$ is the interval $[-1, 1]$.

Domain$(f) = [-1, 1]$.


Comparing our result with the given options:

(A) [–1, 1] - Matches our calculated domain.

(B) [–1, π + 1]

(C) ( –∞, ∞)

(D) φ

The correct option is (A).

Example 35: The value of sin (2 sin–1 (.6)) is

(A) .48

(B) .96

(C) 1.2

(D) sin 1.2

Answer:

To Find: The value of $\sin (2 \sin^{–1} (.6))$.


Solution:

We need to evaluate the expression $\sin (2 \sin^{–1} (0.6))$.


Let $y = \sin^{–1} (0.6)$.

By the definition of the inverse sine function, this means $\sin y = 0.6$.

The argument of $\sin^{–1}$ is $0.6$, which is between $-1$ and $1$. The principal value branch of $\sin^{-1} x$ for $x \in [0, 1]$ is $[0, \frac{\pi}{2}]$. Thus, the angle $y = \sin^{-1}(0.6)$ lies in the interval $[0, \frac{\pi}{2}]$.


We need to find the value of $\sin (2y)$.

Using the double angle formula for sine:

$\sin(2y) = 2 \sin y \cos y$.


We already have $\sin y = 0.6$. We need to find the value of $\cos y$.

Using the fundamental trigonometric identity $\sin^2 y + \cos^2 y = 1$, we can solve for $\cos y$:

$\cos^2 y = 1 - \sin^2 y$

$\cos^2 y = 1 - (0.6)^2$.

$\cos^2 y = 1 - 0.36$.

$\cos^2 y = 0.64$.

Taking the square root of both sides:

$\cos y = \pm \sqrt{0.64} = \pm 0.8$.

Since the angle $y$ is in the interval $[0, \frac{\pi}{2}]$ (the first quadrant), the cosine of $y$ must be non-negative ($\cos y \geq 0$).

Therefore, $\cos y = 0.8$.


Now, substitute the values of $\sin y$ and $\cos y$ into the formula for $\sin(2y)$:

$\sin(2y) = 2 \times (0.6) \times (0.8)$.

Perform the multiplication:

$\sin(2y) = 1.2 \times 0.8$.

$\sin(2y) = 0.96$.


Thus, the value of $\sin (2 \sin^{–1} (0.6))$ is $0.96$.


Comparing our result with the given options:

(A) .48

(B) .96

(C) 1.2

(D) sin 1.2

The calculated value $0.96$ matches option (B).


The correct option is (B).

Example 36: If $\sin^{–1} x + \sin^{–1} y = \frac{π}{2}$ , then value of cos–1 x + cos–1 y is

(A) $\frac{π}{2}$

(B) π

(C) 0

(D) $\frac{2π}{3}$

Answer:

To Find: The value of $\cos^{–1} x + \cos^{–1} y$, given that $\sin^{–1} x + \sin^{–1} y = \frac{π}{2}$.


Solution:

The given equation is $\sin^{–1} x + \sin^{–1} y = \frac{π}{2}$.


We use the fundamental identity relating the inverse sine and inverse cosine functions:

$\sin^{–1} z + \cos^{–1} z = \frac{π}{2}$

This identity is valid for any value of $z$ in the interval $[-1, 1]$, which is the domain of both $\sin^{–1} z$ and $\cos^{–1} z$.

From this identity, we can express $\cos^{–1} z$ in terms of $\sin^{–1} z$:

$\cos^{–1} z = \frac{π}{2} - \sin^{–1} z$.


Applying this identity for $z=x$ and $z=y$, we get:

$\cos^{–1} x = \frac{π}{2} - \sin^{–1} x$

$\cos^{–1} y = \frac{π}{2} - \sin^{–1} y$


Now, consider the expression we need to evaluate: $\cos^{–1} x + \cos^{–1} y$.

Substitute the expressions we found for $\cos^{–1} x$ and $\cos^{–1} y$:

$\cos^{–1} x + \cos^{–1} y = \left( \frac{π}{2} - \sin^{–1} x \right) + \left( \frac{π}{2} - \sin^{–1} y \right)$.

Combine the terms:

$\cos^{–1} x + \cos^{–1} y = \frac{π}{2} + \frac{π}{2} - \sin^{–1} x - \sin^{–1} y$.

$\cos^{–1} x + \cos^{–1} y = π - (\sin^{–1} x + \sin^{–1} y)$.


We are given that $\sin^{–1} x + \sin^{–1} y = \frac{π}{2}$.

Substitute this given value into the equation:

$\cos^{–1} x + \cos^{–1} y = π - \left( \frac{π}{2} \right)$.


Perform the subtraction:

$\cos^{–1} x + \cos^{–1} y = \frac{2π}{2} - \frac{π}{2} = \frac{2π - π}{2} = \frac{π}{2}$.


Thus, the value of $\cos^{–1} x + \cos^{–1} y$ is $\frac{π}{2}$.


Comparing this result with the given options:

(A) $\frac{π}{2}$ - Matches our calculated value.

(B) π

(C) 0

(D) $\frac{2π}{3}$

The correct option is (A).

Example 37: The value of $\tan \left( \cos^{−1} \frac{3}{5} + \tan^{−1} \frac{1}{4} \right)$ is

(A) $\frac{19}{8}$

(B) $\frac{8}{19}$

(C) $\frac{19}{12}$

(D) $\frac{3}{4}$

Answer:

To Find: The value of $\tan \left( \cos^{−1} \frac{3}{5} + \tan^{−1} \frac{1}{4} \right)$.


Solution:

Let the given expression be $E$.

$E = \tan \left( \cos^{−1} \frac{3}{5} + \tan^{−1} \frac{1}{4} \right)$.


Let $A = \cos^{−1} \frac{3}{5}$ and $B = \tan^{−1} \frac{1}{4}$.

Then the expression becomes $E = \tan (A+B)$.


From $A = \cos^{−1} \frac{3}{5}$, we have $\cos A = \frac{3}{5}$.

Since $\frac{3}{5}$ is positive, the principal value of $A$ lies in the first quadrant, i.e., $A \in \left[0, \frac{\pi}{2}\right)$.

In the first quadrant, $\sin A$ is positive. We can find $\sin A$ using the identity $\sin^2 A + \cos^2 A = 1$:

$\sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{25-9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$.

Now we find $\tan A = \frac{\sin A}{\cos A}$:

$\tan A = \frac{4/5}{3/5} = \frac{4}{3}$.


From $B = \tan^{−1} \frac{1}{4}$, we have $\tan B = \frac{1}{4}$.

Since $\frac{1}{4}$ is positive, the principal value of $B$ lies in the first quadrant, i.e., $B \in \left(0, \frac{\pi}{2}\right)$.


Now we use the tangent addition formula: $\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$.

Substitute the values of $\tan A = \frac{4}{3}$ and $\tan B = \frac{1}{4}$:

$E = \frac{\frac{4}{3} + \frac{1}{4}}{1 - \frac{4}{3} \times \frac{1}{4}}$.


Calculate the numerator and the denominator:

Numerator: $\frac{4}{3} + \frac{1}{4} = \frac{4 \times 4 + 1 \times 3}{3 \times 4} = \frac{16 + 3}{12} = \frac{19}{12}$.

Denominator: $1 - \frac{4}{3} \times \frac{1}{4} = 1 - \frac{4}{12} = 1 - \frac{1}{3} = \frac{3 - 1}{3} = \frac{2}{3}$.


So, $E = \frac{\frac{19}{12}}{\frac{2}{3}}$.

$E = \frac{19}{12} \times \frac{3}{2}$.

$E = \frac{19}{\cancel{12}^4} \times \frac{\cancel{3}^1}{2}$.

$E = \frac{19 \times 1}{4 \times 2} = \frac{19}{8}$.


The value of the expression is $\frac{19}{8}$.


Comparing our result with the given options:

(A) $\frac{19}{8}$ - Matches our calculated value.

(B) $\frac{8}{19}$

(C) $\frac{19}{12}$

(D) $\frac{3}{4}$

The correct option is (A).

Example 38: The value of the expression sin [cot–1 (cos (tan–1 1))] is

(A) 0

(B) 1

(C) $\frac{1}{\sqrt{3}}$

(D) $\sqrt{\frac{2}{3}}$

Answer:

To Find: The value of the expression $\sin [\cot^{–1} (\cos (\tan^{–1} 1))]$.


Solution:

Let the given expression be $E = \sin [\cot^{–1} (\cos (\tan^{–1} 1))]$. We evaluate this expression step-by-step, starting from the innermost function.


Step 1: Evaluate $\tan^{–1} 1$.

The principal value branch of $\tan^{–1} x$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$. We need to find the angle $\theta$ in this interval such that $\tan \theta = 1$.

We know that $\tan \frac{\pi}{4} = 1$.

Since $\frac{\pi}{4} \in (-\frac{\pi}{2}, \frac{\pi}{2})$, the principal value is $\tan^{–1} 1 = \frac{\pi}{4}$.


Step 2: Evaluate $\cos (\tan^{–1} 1)$.

Substitute the value from Step 1:

$\cos (\tan^{–1} 1) = \cos \left( \frac{\pi}{4} \right)$.

We know that $\cos \left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2}}$.


Step 3: Evaluate $\cot^{–1} (\cos (\tan^{–1} 1))$.

Substitute the value from Step 2:

$\cot^{–1} (\cos (\tan^{–1} 1)) = \cot^{–1} \left( \frac{1}{\sqrt{2}} \right)$.

Let $\phi = \cot^{–1} \left( \frac{1}{\sqrt{2}} \right)$.

By the definition of the inverse cotangent function, $\cot \phi = \frac{1}{\sqrt{2}}$.

The principal value branch of $\cot^{–1} x$ is $(0, \pi)$. Since the argument $\frac{1}{\sqrt{2}}$ is positive, the angle $\phi$ lies in the first quadrant, i.e., $\phi \in (0, \frac{\pi}{2})$.

We need to find the sine of this angle $\phi$. We can construct a right-angled triangle where the adjacent side is 1 and the opposite side is $\sqrt{2}$ relative to angle $\phi$ (since $\cot \phi = \frac{\text{Adjacent}}{\text{Opposite}}$). The hypotenuse is $\sqrt{1^2 + (\sqrt{2})^2} = \sqrt{1+2} = \sqrt{3}$.

Then, $\sin \phi = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{\sqrt{2}}{\sqrt{3}} = \sqrt{\frac{2}{3}}$.

Since $\phi \in (0, \frac{\pi}{2})$, $\sin \phi$ must be positive, which $\sqrt{\frac{2}{3}}$ is.

So, the value of $\cot^{–1} \left( \frac{1}{\sqrt{2}} \right)$ is the angle whose sine is $\sqrt{\frac{2}{3}}$ and which lies in $(0, \frac{\pi}{2})$.


Step 4: Evaluate $\sin [\cot^{–1} (\cos (\tan^{–1} 1))]$.

Substitute the result from Step 3. We need to find $\sin(\phi)$ where $\phi = \cot^{–1} \left( \frac{1}{\sqrt{2}} \right)$.

From Step 3, we found that $\sin \phi = \sqrt{\frac{2}{3}}$.

Therefore, $\sin [\cot^{–1} (\cos (\tan^{–1} 1))] = \sqrt{\frac{2}{3}}$.


The value of the expression is $\sqrt{\frac{2}{3}}$.


Comparing our result with the given options:

(A) 0

(B) 1

(C) $\frac{1}{\sqrt{3}}$

(D) $\sqrt{\frac{2}{3}}$

The correct option is (D).

Example 39: The equation $\tan^{–1} x – \cot^{–1} x = \tan^{–1} \left( \frac{1}{\sqrt{3}} \right)$ has

(A) no solution

(B) unique solution

(C) infinite number of solutions

(D) two solutions

Answer:

To Determine: The number of solutions for the equation $\tan^{–1} x – \cot^{–1} x = \tan^{–1} \left( \frac{1}{\sqrt{3}} \right)$.


Solution:

The given equation is:

$\tan^{–1} x – \cot^{–1} x = \tan^{–1} \left( \frac{1}{\sqrt{3}} \right)$


The domain for both $\tan^{–1} x$ and $\cot^{–1} x$ is the set of all real numbers, $\text{R}$. Thus, the equation is defined for all $x \in \text{R}$.


We use the identity $\tan^{–1} x + \cot^{–1} x = \frac{π}{2}$, which holds for all $x \in \text{R}$.

From this identity, we can express $\cot^{–1} x$ as:

$\cot^{–1} x = \frac{π}{2} - \tan^{–1} x$.


Substitute this expression for $\cot^{–1} x$ into the given equation:

$\tan^{–1} x – \left( \frac{π}{2} - \tan^{–1} x \right) = \tan^{–1} \left( \frac{1}{\sqrt{3}} \right)$.

Simplify the left-hand side:

$\tan^{–1} x - \frac{π}{2} + \tan^{–1} x = \tan^{–1} \left( \frac{1}{\sqrt{3}} \right)$.

$2\tan^{–1} x - \frac{π}{2} = \tan^{–1} \left( \frac{1}{\sqrt{3}} \right)$.


Evaluate the value of the right-hand side term, $\tan^{–1} \left( \frac{1}{\sqrt{3}} \right)$.

The principal value of $\tan^{–1} \left( \frac{1}{\sqrt{3}} \right)$ is the angle in $(-\frac{\pi}{2}, \frac{\pi}{2})$ whose tangent is $\frac{1}{\sqrt{3}}$. This angle is $\frac{π}{6}$.

So, $\tan^{–1} \left( \frac{1}{\sqrt{3}} \right) = \frac{π}{6}$.


Substitute this value into the equation:

$2\tan^{–1} x - \frac{π}{2} = \frac{π}{6}$.

Now, solve for $\tan^{–1} x$. Add $\frac{\pi}{2}$ to both sides:

$2\tan^{–1} x = \frac{π}{6} + \frac{π}{2}$.

Find a common denominator (6) for the right-hand side:

$2\tan^{–1} x = \frac{π}{6} + \frac{3π}{6}$.

$2\tan^{–1} x = \frac{4π}{6}$.

$2\tan^{–1} x = \frac{2π}{3}$.


Divide both sides by 2:

$\tan^{–1} x = \frac{2π}{3} \times \frac{1}{2}$.

$\tan^{–1} x = \frac{π}{3}$.


Now, find $x$ by taking the tangent of both sides:

$x = \tan \left( \frac{π}{3} \right)$.

$x = \sqrt{3}$.


We obtained a unique value for $x$. We should check if this value is valid in the original equation. The domains of $\tan^{-1} x$ and $\cot^{-1} x$ are all real numbers, and $x=\sqrt{3}$ is a real number, so it is within the domain.

Let's verify the solution $x=\sqrt{3}$:

L.H.S. = $\tan^{-1} \sqrt{3} - \cot^{-1} \sqrt{3} = \frac{\pi}{3} - \frac{\pi}{6} = \frac{2\pi - \pi}{6} = \frac{\pi}{6}$.

R.H.S. = $\tan^{-1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6}$.

Since L.H.S. = R.H.S., the value $x=\sqrt{3}$ is indeed a solution.


Since our algebraic manipulation led to a single value for $\tan^{-1} x$, and $\tan^{-1} x$ is a one-to-one function, there is only one value of $x$ that satisfies the equation.

Therefore, the equation has a unique solution.


Comparing our finding with the given options:

(A) no solution

(B) unique solution

(C) infinite number of solutions

(D) two solutions

The correct option is (B).

Example 40: If $α$ ≤ 2 sin–1 x + cos–1 x ≤ $β$ , then

(A) $α = \frac{−π}{2}, β = \frac{π}{2}$

(B) $α$ = 0, $β$ = π

(C) $α = \frac{−π}{2}, β = \frac{3π}{2}$

(D) $α$ = 0, $β$ = 2π

Answer:

To Find: The values of $\alpha$ and $\beta$ such that $\alpha$ ≤ $2 \sin^{–1} x + \cos^{–1} x$ ≤ $\beta$.


Solution:

Let the expression be $f(x) = 2 \sin^{–1} x + \cos^{–1} x$.

The function is defined when both $\sin^{–1} x$ and $\cos^{–1} x$ are defined. The domain of both $\sin^{–1} x$ and $\cos^{–1} x$ is $[-1, 1]$. Therefore, the domain of $f(x)$ is $x \in [-1, 1]$.


We can rewrite the expression using the identity $\sin^{–1} x + \cos^{–1} x = \frac{π}{2}$, which is valid for $x \in [-1, 1]$.

$f(x) = \sin^{–1} x + \sin^{–1} x + \cos^{–1} x$

$f(x) = \sin^{–1} x + (\sin^{–1} x + \cos^{–1} x)$

Substitute the identity:

$f(x) = \sin^{–1} x + \frac{π}{2}$.


Now, we need to find the range of $f(x)$ as $x$ varies in the domain $[-1, 1]$.

Let $y = \sin^{–1} x$. The range of $\sin^{–1} x$ for $x \in [-1, 1]$ is the interval $\left[ -\frac{π}{2}, \frac{π}{2} \right]$.

So, for $x \in [-1, 1]$, we have $-\frac{π}{2} \leq \sin^{–1} x \leq \frac{π}{2}$.


Substitute $\sin^{–1} x$ with $y$ in the expression for $f(x)$: $f(x) = y + \frac{π}{2}$.

Since $-\frac{π}{2} \leq y \leq \frac{π}{2}$, we add $\frac{π}{2}$ to all parts of the inequality to find the range of $f(x)$:

$-\frac{π}{2} + \frac{π}{2} \leq y + \frac{π}{2} \leq \frac{π}{2} + \frac{π}{2}$.

$0 \leq f(x) \leq π$.


The range of the expression $2 \sin^{–1} x + \cos^{–1} x$ is the interval $[0, π]$.

The problem states that $\alpha$ ≤ $2 \sin^{–1} x + \cos^{–1} x$ ≤ $\beta$. This means $\alpha$ is the minimum value and $\beta$ is the maximum value of the expression.

Therefore, the least value is $\alpha = 0$ and the greatest value is $\beta = π$.


Comparing our result with the given options:

(A) $α = \frac{−π}{2}, β = \frac{π}{2}$

(B) $α$ = 0, $β$ = π - Matches our calculated values.

(C) $α = \frac{−π}{2}, β = \frac{3π}{2}$

(D) $α$ = 0, $β$ = 2π

The correct option is (B).

Example 41: The value of tan2 (sec–1 2) + cot2 (cosec–1 3) is

(A) 5

(B) 11

(C) 13

(D) 15

Answer:

To Find: The value of $\tan^2 (\sec^{–1} 2) + \cot^2 (\text{cosec}^{–1} 3)$.


Solution:

Let the given expression be $E = \tan^2 (\sec^{–1} 2) + \cot^2 (\text{cosec}^{–1} 3)$.


First, consider the term $\tan (\sec^{–1} 2)$.

Let $\theta = \sec^{–1} 2$.

By the definition of the inverse secant function, $\sec \theta = 2$.

The principal value branch of $\sec^{–1} x$ for $x \geq 1$ is $[0, \frac{\pi}{2})$. Since $2 \geq 1$, the angle $\theta$ lies in the interval $[0, \frac{\pi}{2})$.

We know the identity $\tan^2 \theta = \sec^2 \theta - 1$.

Substitute $\sec \theta = 2$ into the identity:

$\tan^2 \theta = (2)^2 - 1 = 4 - 1 = 3$.

Since $\theta \in [0, \frac{\pi}{2})$, $\tan \theta$ is non-negative. So, $\tan \theta = \sqrt{3}$.

Thus, $\tan (\sec^{–1} 2) = \sqrt{3}$.

The first term squared is $\tan^2 (\sec^{–1} 2) = (\sqrt{3})^2 = 3$.


Next, consider the term $\cot (\text{cosec}^{–1} 3)$.

Let $\phi = \text{cosec}^{–1} 3$.

By the definition of the inverse cosecant function, $\text{cosec} \phi = 3$.

The principal value branch of $\text{cosec}^{–1} x$ for $x \geq 1$ is $(0, \frac{\pi}{2}]$. Since $3 \geq 1$, the angle $\phi$ lies in the interval $(0, \frac{\pi}{2}]$.

We know the identity $\cot^2 \phi = \text{cosec}^2 \phi - 1$.

Substitute $\text{cosec} \phi = 3$ into the identity:

$\cot^2 \phi = (3)^2 - 1 = 9 - 1 = 8$.

Since $\phi \in (0, \frac{\pi}{2}]$, $\cot \phi$ is non-negative. So, $\cot \phi = \sqrt{8}$.

Thus, $\cot (\text{cosec}^{–1} 3) = \sqrt{8}$.

The second term squared is $\cot^2 (\text{cosec}^{–1} 3) = (\sqrt{8})^2 = 8$.


Now, we find the value of the expression $E$ by adding the two squared terms:

$E = \tan^2 (\sec^{–1} 2) + \cot^2 (\text{cosec}^{–1} 3)$.

$E = 3 + 8 = 11$.


The value of the expression is 11.


Comparing our result with the given options:

(A) 5

(B) 11 - Matches our calculated value.

(C) 13

(D) 15

The correct option is (B).



Exercise

Question 1 to 11 (Short Answer Type Questions)

Question 1. Find the value of $\tan^{-1} \left( \tan \frac{5π}{6} \right) + \cos^{-1} \left( \cos \frac{13π}{6} \right)$

Answer:

Solution

We need to find the value of the expression $\tan^{-1} \left( \tan \frac{5π}{6} \right) + \cos^{-1} \left( \cos \frac{13π}{6} \right)$.

Let's evaluate each term separately.

For the first term, $\tan^{-1} \left( \tan \frac{5π}{6} \right)$:

The principal value branch of $\tan^{-1}(x)$ is $(-\frac{π}{2}, \frac{π}{2})$.

The angle $\frac{5π}{6}$ is not in the interval $(-\frac{π}{2}, \frac{π}{2})$, as $\frac{5π}{6} > \frac{π}{2}$ (since $5/6 > 1/2$).

We know that $\tan(\pi - x) = -\tan x$.

So, $\tan \frac{5π}{6} = \tan (\pi - \frac{π}{6}) = -\tan \frac{π}{6}$.

We also know that $\tan(-x) = -\tan x$. Therefore, $-\tan \frac{π}{6} = \tan (-\frac{π}{6})$.

So, $\tan \frac{5π}{6} = \tan (-\frac{π}{6})$.

The angle $-\frac{π}{6}$ lies in the principal value branch $(-\frac{π}{2}, \frac{π}{2})$.

Thus, $\tan^{-1} \left( \tan \frac{5π}{6} \right) = \tan^{-1} \left( \tan (-\frac{π}{6}) \right) = -\frac{π}{6}$.

For the second term, $\cos^{-1} \left( \cos \frac{13π}{6} \right)$:

The principal value branch of $\cos^{-1}(x)$ is $[0, π]$.

The angle $\frac{13π}{6}$ is not in the interval $[0, π]$, as $\frac{13π}{6} > π$ (since $13/6 > 1$).

We know that $\cos(2nπ + x) = \cos x$ for any integer $n$.

We can write $\frac{13π}{6} = \frac{12π + π}{6} = 2π + \frac{π}{6}$.

So, $\cos \frac{13π}{6} = \cos (2π + \frac{π}{6}) = \cos \frac{π}{6}$.

The angle $\frac{π}{6}$ lies in the principal value branch $[0, π]$.

Thus, $\cos^{-1} \left( \cos \frac{13π}{6} \right) = \cos^{-1} \left( \cos \frac{π}{6} \right) = \frac{π}{6}$.

Now, we add the values of the two terms:

Value $= \tan^{-1} \left( \tan \frac{5π}{6} \right) + \cos^{-1} \left( \cos \frac{13π}{6} \right) = -\frac{π}{6} + \frac{π}{6}$.

Value $= 0$.

The final answer is $0$.

Question 2. Evaluate $\cos \left[ \cos^{−1} \left( \frac{−\sqrt{3}}{2} \right) + \frac{π}{6} \right]$ .

Answer:

Solution

We need to evaluate the expression $\cos \left[ \cos^{−1} \left( \frac{−\sqrt{3}}{2} \right) + \frac{π}{6} \right]$.

First, let's find the value of the inverse cosine term, $\cos^{−1} \left( \frac{−\sqrt{3}}{2} \right)$.

The principal value branch of $\cos^{-1}(x)$ is $[0, π]$.

We are looking for an angle $\theta$ in the interval $[0, π]$ such that $\cos \theta = \frac{-\sqrt{3}}{2}$.

We know that $\cos \frac{π}{6} = \frac{\sqrt{3}}{2}$.

Since $\cos(π - x) = -\cos x$, we have:

$\cos \left( π - \frac{π}{6} \right) = -\cos \frac{π}{6}$

$\cos \left( \frac{6π - π}{6} \right) = -\frac{\sqrt{3}}{2}$

$\cos \left( \frac{5π}{6} \right) = \frac{-\sqrt{3}}{2}$

Since $\frac{5π}{6}$ is in the interval $[0, π]$, the principal value of $\cos^{−1} \left( \frac{−\sqrt{3}}{2} \right)$ is $\frac{5π}{6}$.

$\cos^{−1} \left( \frac{−\sqrt{3}}{2} \right) = \frac{5π}{6}$

... (i)

Now substitute this value back into the original expression:

Expression $= \cos \left[ \frac{5π}{6} + \frac{π}{6} \right]$

Simplify the angle inside the cosine:

$\frac{5π}{6} + \frac{π}{6} = \frac{5π + π}{6} = \frac{6π}{6} = π$

So the expression becomes $\cos(π)$.

We know that $\cos(π) = -1$.

Thus, the value of the given expression is $-1$.

The final answer is $-1$.

Question 3. Prove that $\cot \left( \frac{π}{4} − 2\cot^{−1} 3 \right) = 7$.

Answer:

To Prove

$\cot \left( \frac{π}{4} − 2\cot^{−1} 3 \right) = 7$


Proof

Let the left-hand side of the equation be LHS.

LHS $= \cot \left( \frac{π}{4} − 2\cot^{−1} 3 \right)$

Let $A = \cot^{−1} 3$.

By the definition of inverse cotangent, this implies $\cot A = 3$.

We need to evaluate $\cot \left( \frac{π}{4} − 2A \right)$.

First, let's find the value of $\cot(2A)$.

We use the double angle formula for cotangent, which is given by:

$\cot(2A) = \frac{\cot^2 A - 1}{2 \cot A}$

Substitute the value $\cot A = 3$ into the formula:

$\cot(2A) = \frac{(3)^2 - 1}{2(3)}$

$\cot(2A) = \frac{9 - 1}{6}$

$\cot(2A) = \frac{8}{6}$

$\cot(2A) = \frac{4}{3}$

Now, we use the difference formula for cotangent: $\cot(x - y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}$.

Here, we consider $x = \frac{π}{4}$ and $y = 2A$.

We know that $\cot \frac{π}{4} = 1$ and we have calculated $\cot(2A) = \frac{4}{3}$.

Substitute these values into the difference formula:

$\cot \left( \frac{π}{4} − 2A \right) = \frac{\cot \frac{π}{4} \cot(2A) + 1}{\cot(2A) - \cot \frac{π}{4}}$

$\cot \left( \frac{π}{4} − 2A \right) = \frac{(1) \left( \frac{4}{3} \right) + 1}{\left( \frac{4}{3} \right) - 1}$

Simplify the numerator and the denominator:

Numerator $= \frac{4}{3} + 1 = \frac{4}{3} + \frac{3}{3} = \frac{4+3}{3} = \frac{7}{3}$

Denominator $= \frac{4}{3} - 1 = \frac{4}{3} - \frac{3}{3} = \frac{4-3}{3} = \frac{1}{3}$

So, $\cot \left( \frac{π}{4} − 2A \right) = \frac{\frac{7}{3}}{\frac{1}{3}}$

$\cot \left( \frac{π}{4} − 2A \right) = \frac{7}{3} \times \frac{3}{1}$

$\cot \left( \frac{π}{4} − 2A \right) = 7$

Thus, LHS $= 7$.

Since LHS $= 7$, which is equal to the right-hand side (RHS), the given statement is proved.

Hence, $\cot \left( \frac{π}{4} − 2\cot^{−1} 3 \right) = 7$.

Question 4. Find the value of $\tan^{-1} \left( −\frac{1}{\sqrt{3}} \right) + \cot^{−1} \left( \frac{1}{\sqrt{3}} \right) + \tan^{−1} \left( \sin \left( \frac{−π}{2} \right) \right)$.

Answer:

Solution

We need to find the value of the expression $E = \tan^{-1} \left( −\frac{1}{\sqrt{3}} \right) + \cot^{−1} \left( \frac{1}{\sqrt{3}} \right) + \tan^{−1} \left( \sin \left( \frac{−π}{2} \right) \right)$.

Let's evaluate each term separately.

For the first term, $\tan^{-1} \left( −\frac{1}{\sqrt{3}} \right)$:

The principal value branch of $\tan^{-1}(x)$ is $(-\frac{π}{2}, \frac{π}{2})$.

We know that $\tan \frac{π}{6} = \frac{1}{\sqrt{3}}$. Since $\tan(-x) = -\tan x$, we have $\tan \left( -\frac{π}{6} \right) = -\tan \frac{π}{6} = -\frac{1}{\sqrt{3}}$.

Since $-\frac{π}{6}$ lies in the interval $(-\frac{π}{2}, \frac{π}{2})$, the principal value is:

$\tan^{-1} \left( −\frac{1}{\sqrt{3}} \right) = -\frac{π}{6}$

For the second term, $\cot^{−1} \left( \frac{1}{\sqrt{3}} \right)$:

The principal value branch of $\cot^{-1}(x)$ is $(0, π)$.

We know that $\cot \frac{π}{3} = \frac{1}{\sqrt{3}}$.

Since $\frac{π}{3}$ lies in the interval $(0, π)$, the principal value is:

$\cot^{−1} \left( \frac{1}{\sqrt{3}} \right) = \frac{π}{3}$

For the third term, $\tan^{−1} \left( \sin \left( \frac{−π}{2} \right) \right)$:

First, evaluate $\sin \left( \frac{−π}{2} \right)$. We know that $\sin \left( -\frac{π}{2} \right) = -1$.

So the term becomes $\tan^{−1}(-1)$.

The principal value branch of $\tan^{-1}(x)$ is $(-\frac{π}{2}, \frac{π}{2})$.

We know that $\tan \frac{π}{4} = 1$. Since $\tan(-x) = -\tan x$, we have $\tan \left( -\frac{π}{4} \right) = -\tan \frac{π}{4} = -1$.

Since $-\frac{π}{4}$ lies in the interval $(-\frac{π}{2}, \frac{π}{2})$, the principal value is:

$\tan^{−1}(-1) = -\frac{π}{4}$


Now, sum the values of the three terms:

$E = \left( -\frac{π}{6} \right) + \left( \frac{π}{3} \right) + \left( -\frac{π}{4} \right)$

To add these fractions, find a common denominator, which is 12.

$E = -\frac{2π}{12} + \frac{4π}{12} - \frac{3π}{12}$

$E = \frac{-2π + 4π - 3π}{12}$

$E = \frac{(4 - 2 - 3)π}{12}$

$E = \frac{(4 - 5)π}{12}$

$E = \frac{-π}{12}$

The final answer is $-\frac{π}{12}$.

Question 5. Find the value of $\tan^{-1} \left( \tan \frac{2π}{3} \right)$.

Answer:

Solution

We need to find the value of the expression $\tan^{-1} \left( \tan \frac{2π}{3} \right)$.

The principal value branch of $\tan^{-1}(x)$ is the open interval $(-\frac{π}{2}, \frac{π}{2})$.

For the property $\tan^{-1}(\tan x) = x$ to hold, the value of $x$ must lie in the interval $(-\frac{π}{2}, \frac{π}{2})$.

The given angle is $\frac{2π}{3}$.

We check if $\frac{2π}{3}$ is in the interval $(-\frac{π}{2}, \frac{π}{2})$.

$\frac{2π}{3} \approx 2 \times 1.047 \text{ radians} \approx 2.094 \text{ radians}$.

$\frac{π}{2} \approx 1.571 \text{ radians}$.

Since $\frac{2π}{3} > \frac{π}{2}$, the angle $\frac{2π}{3}$ is not in the principal value branch of $\tan^{-1}(x)$.

We need to find an angle $\theta$ in the interval $(-\frac{π}{2}, \frac{π}{2})$ such that $\tan \theta = \tan \frac{2π}{3}$.

We use the trigonometric identity $\tan(\pi - x) = -\tan x$.

$\tan \frac{2π}{3} = \tan \left( π - \frac{π}{3} \right)$

$\tan \frac{2π}{3} = -\tan \frac{π}{3}$

We also use the identity $\tan(-x) = -\tan x$.

$-\tan \frac{π}{3} = \tan \left( -\frac{π}{3} \right)$

Therefore, $\tan \frac{2π}{3} = \tan \left( -\frac{π}{3} \right)$.

The angle $-\frac{π}{3}$ lies in the interval $(-\frac{π}{2}, \frac{π}{2})$, because $-\frac{π}{2} < -\frac{π}{3} < \frac{π}{2}$.

Now we can apply the property $\tan^{-1}(\tan \theta) = \theta$ for $\theta \in (-\frac{π}{2}, \frac{π}{2})$.

$\tan^{-1} \left( \tan \frac{2π}{3} \right) = \tan^{-1} \left( \tan \left( -\frac{π}{3} \right) \right)$

$\tan^{-1} \left( \tan \frac{2π}{3} \right) = -\frac{π}{3}$

[Since $-\frac{π}{3} \in (-\frac{π}{2}, \frac{π}{2})$]

The final answer is $-\frac{π}{3}$.

Question 6. Show that $2 \tan^{-1} (-3) = \frac{−π}{2} + \tan^{-1} \left( \frac{−4}{3} \right)$

Answer:

To Prove

$2 \tan^{-1} (-3) = \frac{−π}{2} + \tan^{-1} \left( \frac{−4}{3} \right)$


Proof

Let $A = \tan^{-1}(-3)$.

Since $-3$ is negative, the principal value of $\tan^{-1}(-3)$ lies in the interval $(-\frac{π}{2}, 0)$.

More specifically, since $|-3| = 3 > 1$, $A$ lies between $-\frac{π}{2}$ and $-\frac{π}{4}$.

So, $A \in (-\frac{π}{2}, -\frac{π}{4})$.

Multiplying by 2, we get $2A \in (-π, -\frac{π}{2})$.

We want to prove $2A = -\frac{π}{2} + \tan^{-1}(-\frac{4}{3})$.

This is equivalent to proving $2A + \frac{π}{2} = \tan^{-1}(-\frac{4}{3})$.

Let's examine the range of the left side, $2A + \frac{π}{2}$.

Since $2A \in (-π, -\frac{π}{2})$, adding $\frac{π}{2}$ gives $2A + \frac{π}{2} \in (-π + \frac{π}{2}, -\frac{π}{2} + \frac{π}{2})$, which simplifies to $(-\frac{π}{2}, 0)$.

The principal value of $\tan^{-1}(-\frac{4}{3})$ also lies in the interval $(-\frac{π}{2}, 0)$, since $-\frac{4}{3} < 0$. This range matches the range of $2A + \frac{π}{2}$.

Now, let's calculate the tangent of the expression $2A + \frac{π}{2}$.

$\tan \left( 2A + \frac{π}{2} \right) = \tan \left( \frac{π}{2} + 2A \right)$

Using the trigonometric identity $\tan \left( \frac{π}{2} + \theta \right) = -\cot \theta$, with $\theta = 2A$:

$\tan \left( 2A + \frac{π}{2} \right) = -\cot(2A)$

Since $A = \tan^{-1}(-3)$, we have $\tan A = -3$.

We use the double angle formula for cotangent, $\cot(2A) = \frac{1 - \tan^2 A}{2 \tan A}$ (derived from $\tan(2A) = \frac{2 \tan A}{1 - \tan^2 A}$).

Substitute $\tan A = -3$ into the formula:

$\cot(2A) = \frac{1 - (-3)^2}{2(-3)}$

$\cot(2A) = \frac{1 - 9}{-6}$

$\cot(2A) = \frac{-8}{-6}$

$\cot(2A) = \frac{8}{6} = \frac{4}{3}$

Now substitute this back into the expression for $\tan \left( 2A + \frac{π}{2} \right)$:

$\tan \left( 2A + \frac{π}{2} \right) = -\cot(2A) = -\frac{4}{3}$

Since $2A + \frac{π}{2} \in (-\frac{π}{2}, 0)$ and $\tan \left( 2A + \frac{π}{2} \right) = -\frac{4}{3}$, we can apply the definition of $\tan^{-1}$:

$2A + \frac{π}{2} = \tan^{-1} \left( -\frac{4}{3} \right) $

[Since $2A+\frac{π}{2}$ is in the principal range]

Substitute $A = \tan^{-1}(-3)$ back:

$2 \tan^{-1}(-3) + \frac{π}{2} = \tan^{-1}(-\frac{4}{3})$

Rearrange the equation to isolate $2 \tan^{-1}(-3)$:

$2 \tan^{-1}(-3) = \tan^{-1}(-\frac{4}{3}) - \frac{π}{2}$

Writing the terms in the order given in the question:

$2 \tan^{-1}(-3) = -\frac{π}{2} + \tan^{-1}(-\frac{4}{3})$

This is the required identity.

Hence Proved.

Question 7. Find the real solution of the equation

$\tan^{-1} \sqrt{x (x+1)} + \sin^{-1} \sqrt{x^2+x+1} = \frac{π}{2}$

Answer:

Solution

The given equation is:

$\tan^{-1} \sqrt{x (x+1)} + \sin^{-1} \sqrt{x^2+x+1} = \frac{π}{2}$

... (i)


For the equation to have a real solution, the arguments of the inverse trigonometric functions must be within their respective domains.

For $\tan^{-1} \sqrt{x (x+1)}$ to be defined, the argument $\sqrt{x (x+1)}$ must be a real number. Since it is a square root, it must be non-negative. Thus, $x (x+1) \ge 0$.

The inequality $x(x+1) \ge 0$ holds when $x \le -1$ or $x \ge 0$.

For $\sin^{-1} \sqrt{x^2+x+1}$ to be defined, the argument $\sqrt{x^2+x+1}$ must be a real number in the interval $[-1, 1]$. Since it is a square root, it must be non-negative. Thus, we require $0 \le \sqrt{x^2+x+1} \le 1$.

Squaring the inequality $0 \le \sqrt{x^2+x+1} \le 1$ (since all terms are non-negative), we get $0 \le x^2+x+1 \le 1$.

First, consider $x^2+x+1 \ge 0$. The discriminant of the quadratic $x^2+x+1$ is $1^2 - 4(1)(1) = 1 - 4 = -3$. Since the discriminant is negative and the coefficient of $x^2$ is positive ($1 > 0$), the quadratic $x^2+x+1$ is always positive for all real values of $x$. So, $x^2+x+1 \ge 0$ is true for all real $x$.

Next, consider $x^2+x+1 \le 1$. Subtracting 1 from both sides gives $x^2+x \le 0$, which can be factored as $x(x+1) \le 0$.

The inequality $x(x+1) \le 0$ holds when $-1 \le x \le 0$.

Combining all the domain restrictions, the equation (i) is defined only when ($x \le -1$ or $x \ge 0$) AND ($-1 \le x \le 0$).

The intersection of these conditions is exactly the two points $x=-1$ and $x=0$. These are the only possible real values of $x$ for which the equation is defined.


Now, we check if these possible values are indeed solutions to the equation.

Case 1: Check if $x = -1$ is a solution.

Substitute $x = -1$ into equation (i):

$\tan^{-1} \sqrt{(-1)((-1)+1)} + \sin^{-1} \sqrt{(-1)^2+(-1)+1} = \frac{π}{2}$

$\tan^{-1} \sqrt{(-1)(0)} + \sin^{-1} \sqrt{1-1+1} = \frac{π}{2}$

$\tan^{-1} \sqrt{0} + \sin^{-1} \sqrt{1} = \frac{π}{2}$

$\tan^{-1} 0 + \sin^{-1} 1 = \frac{π}{2}$

$0 + \frac{π}{2} = \frac{π}{2}$

(Since the principal value of $\tan^{-1} 0 = 0$ and $\sin^{-1} 1 = \frac{π}{2}$)

$\frac{π}{2} = \frac{π}{2}$

Since the equality holds, $x = -1$ is a real solution.


Case 2: Check if $x = 0$ is a solution.

Substitute $x = 0$ into equation (i):

$\tan^{-1} \sqrt{(0)((0)+1)} + \sin^{-1} \sqrt{(0)^2+(0)+1} = \frac{π}{2}$

$\tan^{-1} \sqrt{(0)(1)} + \sin^{-1} \sqrt{0+0+1} = \frac{π}{2}$

$\tan^{-1} \sqrt{0} + \sin^{-1} \sqrt{1} = \frac{π}{2}$

$\tan^{-1} 0 + \sin^{-1} 1 = \frac{π}{2}$

$0 + \frac{π}{2} = \frac{π}{2}$

(Since the principal value of $\tan^{-1} 0 = 0$ and $\sin^{-1} 1 = \frac{π}{2}$)

$\frac{π}{2} = \frac{π}{2}$

Since the equality holds, $x = 0$ is a real solution.


Both $x = -1$ and $x = 0$ satisfy the equation.

The real solutions of the equation are $x = -1$ and $x = 0$.

Question 8. Find the value of the expression $\sin \left( 2\tan^{−1} \frac{1}{3} \right) + \cos \left( \tan^{−1} 2\sqrt{2} \right)$

Answer:

Solution

We need to find the value of the expression $E = \sin \left( 2\tan^{−1} \frac{1}{3} \right) + \cos \left( \tan^{−1} 2\sqrt{2} \right)$.

Let's evaluate each part of the expression separately.


Part 1: Evaluate $\sin \left( 2\tan^{−1} \frac{1}{3} \right)$.

Let $\theta = \tan^{−1} \frac{1}{3}$.

This implies $\tan \theta = \frac{1}{3}$. Since $\frac{1}{3} > 0$, the principal value of $\theta$ lies in the interval $(0, \frac{π}{2})$.

We need to find the value of $\sin(2\theta)$.

We use the double angle formula for sine in terms of tangent:

$\sin(2\theta) = \frac{2 \tan \theta}{1 + \tan^2 \theta}$

Substitute the value $\tan \theta = \frac{1}{3}$ into the formula:

$\sin(2\theta) = \frac{2 \left( \frac{1}{3} \right)}{1 + \left( \frac{1}{3} \right)^2}$

$\sin(2\theta) = \frac{\frac{2}{3}}{1 + \frac{1}{9}}$

$\sin(2\theta) = \frac{\frac{2}{3}}{\frac{9}{9} + \frac{1}{9}}$

$\sin(2\theta) = \frac{\frac{2}{3}}{\frac{10}{9}}$

$\sin(2\theta) = \frac{2}{3} \times \frac{9}{10}$

$\sin(2\theta) = \frac{18}{30}$

$\sin(2\theta) = \frac{3}{5}$

So, $\sin \left( 2\tan^{−1} \frac{1}{3} \right) = \frac{3}{5}$.


Part 2: Evaluate $\cos \left( \tan^{−1} 2\sqrt{2} \right)$.

Let $\phi = \tan^{−1} 2\sqrt{2}$.

This implies $\tan \phi = 2\sqrt{2}$. Since $2\sqrt{2} > 0$, the principal value of $\phi$ lies in the interval $(0, \frac{π}{2})$.

We need to find the value of $\cos(\phi)$.

We use the relationship between tangent and cosine: $1 + \tan^2 \phi = \sec^2 \phi$, and $\cos \phi = \frac{1}{\sec \phi}$. Since $\phi \in (0, \frac{π}{2})$, $\cos \phi > 0$ and $\sec \phi > 0$.

$\sec^2 \phi = 1 + (2\sqrt{2})^2$

$\sec^2 \phi = 1 + (4 \times 2)$

$\sec^2 \phi = 1 + 8$

$\sec^2 \phi = 9$

Taking the square root (and choosing the positive root as $\phi \in (0, \frac{π}{2})$):

$\sec \phi = \sqrt{9}$

$\sec \phi = 3$

Now, find $\cos \phi$:

$\cos \phi = \frac{1}{\sec \phi} = \frac{1}{3}$

So, $\cos \left( \tan^{−1} 2\sqrt{2} \right) = \frac{1}{3}$.


Now, sum the values from Part 1 and Part 2:

$E = \sin \left( 2\tan^{−1} \frac{1}{3} \right) + \cos \left( \tan^{−1} 2\sqrt{2} \right)$

$E = \frac{3}{5} + \frac{1}{3}$

To add the fractions, find a common denominator, which is 15.

$E = \frac{3 \times 3}{5 \times 3} + \frac{1 \times 5}{3 \times 5}$

$E = \frac{9}{15} + \frac{5}{15}$

$E = \frac{9+5}{15}$

$E = \frac{14}{15}$

The value of the expression is $\frac{14}{15}$.

Question 9. If 2 tan-1 (cos θ) = tan-1 (2 cosec θ), then show that $θ = \frac{π}{4}$ , where n is any integer.

Answer:

Given

The equation: $2 \tan^{-1} (\cos θ) = \tan^{-1} (2 \text{ cosec } θ)$

To Show

That $θ = \frac{π}{4}$ is a solution to the given equation.


Proof

We are asked to show that $\theta = \frac{π}{4}$ satisfies the given equation.

Substitute $\theta = \frac{π}{4}$ into the left-hand side (LHS) of the equation:

LHS $= 2 \tan^{-1} \left( \cos \frac{π}{4} \right)$

We know that $\cos \frac{π}{4} = \frac{1}{\sqrt{2}}$.

LHS $= 2 \tan^{-1} \left( \frac{1}{\sqrt{2}} \right)$

We use the formula $2 \tan^{-1} x = \tan^{-1} \left( \frac{2x}{1-x^2} \right)$, which is valid for $|x| < 1$.

Here, $x = \frac{1}{\sqrt{2}}$. Since $| \frac{1}{\sqrt{2}} | = \frac{1}{\sqrt{2}} < 1$, the formula is applicable.

Substitute $x = \frac{1}{\sqrt{2}}$ into the formula:

LHS $= \tan^{-1} \left( \frac{2 \left( \frac{1}{\sqrt{2}} \right)}{1 - \left( \frac{1}{\sqrt{2}} \right)^2} \right)$

LHS $= \tan^{-1} \left( \frac{\frac{2}{\sqrt{2}}}{1 - \frac{1}{2}} \right)$

LHS $= \tan^{-1} \left( \frac{\sqrt{2}}{\frac{1}{2}} \right)$

LHS $= \tan^{-1} (2\sqrt{2})$


Now, substitute $\theta = \frac{π}{4}$ into the right-hand side (RHS) of the equation:

RHS $= \tan^{-1} \left( 2 \text{ cosec } \frac{π}{4} \right)$

We know that $\text{cosec } \theta = \frac{1}{\sin \theta}$, so $\text{cosec } \frac{π}{4} = \frac{1}{\sin \frac{π}{4}} = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2}$.

RHS $= \tan^{-1} (2 \times \sqrt{2})$

RHS $= \tan^{-1} (2\sqrt{2})$


Comparing the LHS and RHS, we have:

LHS $= \tan^{-1} (2\sqrt{2})$

RHS $= \tan^{-1} (2\sqrt{2})$

Since LHS = RHS, the equation is satisfied for $\theta = \frac{π}{4}$.

Therefore, $\theta = \frac{π}{4}$ is a solution to the given equation.

Note: The general solutions of the equation arise from $\tan \theta = 1$, which is $\theta = n\pi + \frac{π}{4}$. However, domain considerations for the inverse trigonometric functions in the original equation restrict the possible values of $n$. As shown in preliminary analysis, only even values of $n$ (i.e., $\theta = 2k\pi + \frac{π}{4}$ for integer $k$) satisfy the original equation when principal values are considered. The specific value $\theta = \frac{π}{4}$ corresponds to $k=0$.

Hence Proved.

Question 10. Show that $\cos \left( 2\tan^{−1} \frac{1}{7} \right) = \sin \left( 4\tan^{−1} \frac{1}{3} \right)$.

Answer:

To Prove

$\cos \left( 2\tan^{−1} \frac{1}{7} \right) = \sin \left( 4\tan^{−1} \frac{1}{3} \right)$


Proof

We will evaluate the Left Hand Side (LHS) and the Right Hand Side (RHS) of the equation separately and show that they are equal.


Evaluating LHS: $\cos \left( 2\tan^{−1} \frac{1}{7} \right)$

Let $A = \tan^{-1} \frac{1}{7}$. This means $\tan A = \frac{1}{7}$.

Since $\frac{1}{7} > 0$, the principal value of $A$ lies in the interval $(0, \frac{π}{2})$.

The LHS is equal to $\cos(2A)$.

We use the double angle formula for cosine in terms of tangent:

$\cos(2A) = \frac{1 - \tan^2 A}{1 + \tan^2 A}$

Substitute the value $\tan A = \frac{1}{7}$ into the formula:

$\cos(2A) = \frac{1 - \left( \frac{1}{7} \right)^2}{1 + \left( \frac{1}{7} \right)^2}$

$\cos(2A) = \frac{1 - \frac{1}{49}}{1 + \frac{1}{49}}$

To simplify, find a common denominator for the numerator and denominator:

Numerator $= 1 - \frac{1}{49} = \frac{49}{49} - \frac{1}{49} = \frac{49-1}{49} = \frac{48}{49}$

Denominator $= 1 + \frac{1}{49} = \frac{49}{49} + \frac{1}{49} = \frac{49+1}{49} = \frac{50}{49}$

So, $\cos(2A) = \frac{\frac{48}{49}}{\frac{50}{49}}$

$\cos(2A) = \frac{48}{49} \times \frac{49}{50}$

$\cos(2A) = \frac{48}{50}$

Simplify the fraction by dividing the numerator and denominator by 2:

$\cos(2A) = \frac{\cancel{48}^{24}}{\cancel{50}_{25}} = \frac{24}{25}$

So, LHS $= \frac{24}{25}$.


Evaluating RHS: $\sin \left( 4\tan^{−1} \frac{1}{3} \right)$

Let $B = \tan^{-1} \frac{1}{3}$. This means $\tan B = \frac{1}{3}$.

Since $\frac{1}{3} > 0$, the principal value of $B$ lies in the interval $(0, \frac{π}{2})$.

The RHS is equal to $\sin(4B)$.

We can write $4B$ as $2 \times (2B)$. So, $\sin(4B) = \sin(2 \times 2B)$.

We use the double angle formula for sine: $\sin(2x) = 2 \sin x \cos x$. Here, let $x = 2B$.

$\sin(4B) = 2 \sin(2B) \cos(2B)$

Now we need to find $\sin(2B)$ and $\cos(2B)$ in terms of $\tan B = \frac{1}{3}$.

Use the formulas for $\sin(2B)$ and $\cos(2B)$ in terms of $\tan B$:

$\sin(2B) = \frac{2 \tan B}{1 + \tan^2 B}$

$\cos(2B) = \frac{1 - \tan^2 B}{1 + \tan^2 B}$

Substitute $\tan B = \frac{1}{3}$ into these formulas:

$\sin(2B) = \frac{2 \left( \frac{1}{3} \right)}{1 + \left( \frac{1}{3} \right)^2} = \frac{\frac{2}{3}}{1 + \frac{1}{9}} = \frac{\frac{2}{3}}{\frac{9+1}{9}} = \frac{\frac{2}{3}}{\frac{10}{9}} = \frac{2}{3} \times \frac{9}{10} = \frac{18}{30} = \frac{3}{5}$

$\cos(2B) = \frac{1 - \left( \frac{1}{3} \right)^2}{1 + \left( \frac{1}{3} \right)^2} = \frac{1 - \frac{1}{9}}{1 + \frac{1}{9}} = \frac{\frac{9-1}{9}}{\frac{9+1}{9}} = \frac{\frac{8}{9}}{\frac{10}{9}} = \frac{8}{10} = \frac{4}{5}$

Now substitute these values into the expression for $\sin(4B)$:

$\sin(4B) = 2 \sin(2B) \cos(2B)$

$\sin(4B) = 2 \left( \frac{3}{5} \right) \left( \frac{4}{5} \right)$

$\sin(4B) = 2 \times \frac{3 \times 4}{5 \times 5}$

$\sin(4B) = 2 \times \frac{12}{25}$

$\sin(4B) = \frac{24}{25}$

So, RHS $= \frac{24}{25}$.


Comparing the values of LHS and RHS:

LHS $= \frac{24}{25}$

RHS $= \frac{24}{25}$

Since LHS = RHS, the given identity is proved.

Hence Proved.

Question 11. Solve the following equation $\cos \left( \tan^{−1} x \right) = \sin \left( \cot^{−1} \frac{3}{4} \right)$.

Answer:

Solution

The given equation is:

$\cos \left( \tan^{−1} x \right) = \sin \left( \cot^{−1} \frac{3}{4} \right)$


Let's evaluate the Left Hand Side (LHS) of the equation: $\cos \left( \tan^{−1} x \right)$.

Let $\theta = \tan^{−1} x$.

By the definition of the inverse tangent function, $\tan \theta = x$.

The principal value of $\theta$ lies in the interval $(-\frac{π}{2}, \frac{π}{2})$.

We need to find $\cos \theta$. We can use the trigonometric identity $\sec^2 \theta = 1 + \tan^2 \theta$.

$\sec^2 \theta = 1 + x^2$

$\sec \theta = \pm \sqrt{1 + x^2}$

Since $\theta \in (-\frac{π}{2}, \frac{π}{2})$, the value of $\cos \theta$ is always positive (cosine is positive in the first and fourth quadrants).

Therefore, $\sec \theta$ must also be positive, so $\sec \theta = \sqrt{1 + x^2}$.

Now, we find $\cos \theta = \frac{1}{\sec \theta}$.

$\cos \theta = \frac{1}{\sqrt{1 + x^2}}$

So, LHS $= \frac{1}{\sqrt{1+x^2}}$.


Now, let's evaluate the Right Hand Side (RHS) of the equation: $\sin \left( \cot^{−1} \frac{3}{4} \right)$.

Let $\phi = \cot^{−1} \frac{3}{4}$.

By the definition of the inverse cotangent function, $\cot \phi = \frac{3}{4}$.

Since $\frac{3}{4} > 0$, the principal value of $\phi$ lies in the interval $(0, π)$. Specifically, since $\cot \phi$ is positive, $\phi$ must be in the interval $(0, \frac{π}{2})$.

We need to find $\sin \phi$. We can use the trigonometric identity $\text{cosec}^2 \phi = 1 + \cot^2 \phi$.

$\text{cosec}^2 \phi = 1 + \left( \frac{3}{4} \right)^2$

$\text{cosec}^2 \phi = 1 + \frac{9}{16}$

$\text{cosec}^2 \phi = \frac{16}{16} + \frac{9}{16}$

$\text{cosec}^2 \phi = \frac{25}{16}$

$\text{cosec } \phi = \pm \sqrt{\frac{25}{16}}$

$\text{cosec } \phi = \pm \frac{5}{4}$

Since $\phi \in (0, \frac{π}{2})$, the value of $\sin \phi$ is positive (sine is positive in the first quadrant).

Therefore, $\text{cosec } \phi = \frac{5}{4}$.

Now, we find $\sin \phi = \frac{1}{\text{cosec } \phi}$.

$\sin \phi = \frac{1}{\frac{5}{4}} = \frac{4}{5}$

So, RHS $= \frac{4}{5}$.


Now, we set LHS equal to RHS and solve for $x$:

$\frac{1}{\sqrt{1+x^2}} = \frac{4}{5}$

Since both sides of the equation are positive, we can square both sides:

$\left( \frac{1}{\sqrt{1+x^2}} \right)^2 = \left( \frac{4}{5} \right)^2$

$\frac{1}{1+x^2} = \frac{16}{25}$

Cross-multiply:

$1 \times 25 = 16 \times (1+x^2)$

$25 = 16 + 16x^2$

Subtract 16 from both sides:

$25 - 16 = 16x^2$

$9 = 16x^2$

Divide by 16:

$x^2 = \frac{9}{16}$

Taking the square root of both sides:

$x = \pm \sqrt{\frac{9}{16}}$

$x = \pm \frac{3}{4}$

The real solutions of the equation are $x = \frac{3}{4}$ and $x = -\frac{3}{4}$.

Question 12 to 19 (Long Answer Type Questions)

Question 12. Prove that $\tan^{-1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 − x^2}}{\sqrt{1 + x^2} − \sqrt{1 − x^2}} \right) = \frac{π}{4} + \frac{1}{2} \cos^{−1} x^2$

Answer:

To Prove

$\tan^{-1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 − x^2}}{\sqrt{1 + x^2} − \sqrt{1 − x^2}} \right) = \frac{π}{4} + \frac{1}{2} \cos^{−1} x^2$


Proof

Let the Left Hand Side of the equation be LHS.

LHS $= \tan^{-1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 − x^2}}{\sqrt{1 + x^2} − \sqrt{1 − x^2}} \right)$

For the terms $\sqrt{1-x^2}$ and $\cos^{-1} x^2$ to be defined and real, we must have $1-x^2 \ge 0$ and the argument of $\cos^{-1}$ in $[-1, 1]$. Both conditions require $0 \le x^2 \le 1$.

Let us make the substitution $x^2 = \cos 2\theta$.

Since $0 \le x^2 \le 1$, for the principal value of $\cos^{-1} x^2$, $2\theta$ lies in the interval $[0, \frac{π}{2}]$. This implies $\theta$ lies in the interval $[0, \frac{π}{4}]$.

Substitute $x^2 = \cos 2\theta$ into the terms inside the square roots:

$\sqrt{1 + x^2} = \sqrt{1 + \cos 2\theta}$

Using the identity $1 + \cos 2\theta = 2 \cos^2 \theta$:

$\sqrt{1 + \cos 2\theta} = \sqrt{2 \cos^2 \theta} = \sqrt{2} |\cos \theta|$

Since $\theta \in [0, \frac{π}{4}]$, $\cos \theta \ge 0$, so $|\cos \theta| = \cos \theta$.

$\sqrt{1 + x^2} = \sqrt{2} \cos \theta$

$\sqrt{1 − x^2} = \sqrt{1 − \cos 2\theta}$

Using the identity $1 − \cos 2\theta = 2 \sin^2 \theta$:

$\sqrt{1 − \cos 2\theta} = \sqrt{2 \sin^2 \theta} = \sqrt{2} |\sin \theta|$

Since $\theta \in [0, \frac{π}{4}]$, $\sin \theta \ge 0$, so $|\sin \theta| = \sin \theta$.

$\sqrt{1 − x^2} = \sqrt{2} \sin \theta$

Now substitute these into the argument of the $\tan^{-1}$ function:

Argument $= \frac{\sqrt{2} \cos \theta + \sqrt{2} \sin \theta}{\sqrt{2} \cos \theta − \sqrt{2} \sin \theta}$

Factor out $\sqrt{2}$ from the numerator and denominator:

Argument $= \frac{\sqrt{2}(\cos \theta + \sin \theta)}{\sqrt{2}(\cos \theta − \sin \theta)}$

Argument $= \frac{\cos \theta + \sin \theta}{\cos \theta − \sin \theta}$

Divide the numerator and the denominator by $\cos \theta$ (since $\theta \in [0, \frac{π}{4}]$, $\cos \theta \ne 0$):

Argument $= \frac{\frac{\cos \theta}{\cos \theta} + \frac{\sin \theta}{\cos \theta}}{\frac{\cos \theta}{\cos \theta} − \frac{\sin \theta}{\cos \theta}}$

Argument $= \frac{1 + \tan \theta}{1 − \tan \theta}$

We know the tangent addition formula: $\tan(A + B) = \frac{\tan A + \tan B}{1 − \tan A \tan B}$.

Comparing the argument with this formula, we see that if $A = \frac{π}{4}$ and $B = \theta$, then $\tan A = \tan \frac{π}{4} = 1$, and the expression matches the formula for $\tan(\frac{π}{4} + \theta)$.

Argument $= \tan \left( \frac{π}{4} + \theta \right)$

Now substitute this back into the LHS:

LHS $= \tan^{-1} \left( \tan \left( \frac{π}{4} + \theta \right) \right)$

For the property $\tan^{-1}(\tan y) = y$ to be applicable, the argument $y$ must lie in the principal value branch of $\tan^{-1}$, which is $(-\frac{π}{2}, \frac{π}{2})$.

Since $\theta \in [0, \frac{π}{4}]$, we have $\frac{π}{4} + 0 \le \frac{π}{4} + \theta \le \frac{π}{4} + \frac{π}{4}$.

So, $\frac{π}{4} \le \frac{π}{4} + \theta \le \frac{π}{2}$.

The interval $[\frac{π}{4}, \frac{π}{2}]$ is contained within $(-\frac{π}{2}, \frac{π}{2})$.

Therefore, we can apply the property:

LHS $= \frac{π}{4} + \theta$

Now, we need to express $\theta$ in terms of $x$. From our substitution $x^2 = \cos 2\theta$, we have $2\theta = \cos^{-1} x^2$.

$\theta = \frac{1}{2} \cos^{-1} x^2$

Substitute this value of $\theta$ back into the expression for LHS:

LHS $= \frac{π}{4} + \frac{1}{2} \cos^{-1} x^2$

This is equal to the Right Hand Side (RHS) of the given equation.

Thus, LHS = RHS.

This identity holds for $0 \le x^2 \le 1$, which means $-1 \le x \le 1$.

Hence Proved.

Question 13. Find the simplified form of $\cos^{-1} \left( \frac{3}{5} \cos x + \frac{4}{5} \sin x \right)$, wℎere $x \in \left[ \frac{−3π}{4}, \frac{π}{4} \right]$

Answer:

Given expression:

$ \cos^{-1} \left( \frac{3}{5} \cos x + \frac{4}{5} \sin x \right) $

where $ x \in \left[ \frac{−3π}{4}, \frac{π}{4} \right] $


We aim to simplify the expression inside the inverse cosine. The term $ \frac{3}{5} \cos x + \frac{4}{5} \sin x $ is of the form $a \cos x + b \sin x $. We can express this in the form $ R \cos(x - \alpha) $ or $ R \sin(x + \alpha) $. Let's use the cosine form.

We write $ \frac{3}{5} \cos x + \frac{4}{5} \sin x = R \cos(x - \alpha) = R (\cos x \cos \alpha + \sin x \sin \alpha) $.

Comparing the coefficients of $ \cos x $ and $ \sin x $:

$ R \cos \alpha = \frac{3}{5} $

$ R \sin \alpha = \frac{4}{5} $

Squaring and adding the equations:

$ (R \cos \alpha)^2 + (R \sin \alpha)^2 = \left(\frac{3}{5}\right)^2 + \left(\frac{4}{5}\right)^2 $

$ R^2 (\cos^2 \alpha + \sin^2 \alpha) = \frac{9}{25} + \frac{16}{25} $

$ R^2 (1) = \frac{25}{25} = 1 $

$ R = 1 $ (Since $R$ must be positive).

Now, substituting $ R = 1 $ back into the equations for $ \cos \alpha $ and $ \sin \alpha $:

$ \cos \alpha = \frac{3}{5} $ and $ \sin \alpha = \frac{4}{5} $.

Since both $ \cos \alpha $ and $ \sin \alpha $ are positive, $ \alpha $ lies in the first quadrant. We can find $ \alpha $ using the tangent function:

$ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{4/5}{3/5} = \frac{4}{3} $

So, $ \alpha = \tan^{-1} \left( \frac{4}{3} \right) $. Since $ \tan \frac{π}{4} = 1 $ and $ \frac{4}{3} > 1 $, we know $ \alpha > \frac{π}{4} $. Also, since $ \alpha $ is in the first quadrant, $ \alpha < \frac{π}{2} $. Thus, $ \frac{π}{4} < \alpha < \frac{π}{2} $.


The given expression can now be written as $ \cos^{-1} (\cos(x - \alpha)) $, where $ \alpha = \tan^{-1} \left( \frac{4}{3} \right) $.

The simplification of $ \cos^{-1}(\cos \theta) $ depends on the range of $ \theta $. The principal value range for $ \cos^{-1} $ is $ [0, π] $. The general simplification is given by the graph of $ \cos^{-1}(\cos \theta) $. Specifically:

$ \cos^{-1}(\cos \theta) = \theta $ if $ \theta \in [0, π] $.

$ \cos^{-1}(\cos \theta) = -\theta $ if $ \theta \in [-π, 0] $.

$ \cos^{-1}(\cos \theta) = \theta + 2π $ if $ \theta \in [-2π, -π] $.

$ \cos^{-1}(\cos \theta) = 2π - \theta $ if $ \theta \in [π, 2π] $.

We need to determine the range of $ \theta = x - \alpha $ for the given range of $ x $, which is $ \left[ \frac{−3π}{4}, \frac{π}{4} \right] $.

The range of $ x - \alpha $ is obtained by subtracting $ \alpha $ from the range of $ x $:

$ \frac{−3π}{4} - \alpha \le x - \alpha \le \frac{π}{4} - \alpha $.

Using the established range for $ \alpha $, $ \frac{π}{4} < \alpha < \frac{π}{2} $, we find the bounds for $ x - \alpha $:

Lower bound: $ \frac{−3π}{4} - \alpha $. Since $ \alpha < \frac{π}{2} $, $ - \alpha > - \frac{π}{2} $. Thus, $ \frac{−3π}{4} - \alpha > \frac{−3π}{4} - \frac{π}{2} = \frac{-3π - 2π}{4} = \frac{-5π}{4} $.

Upper bound: $ \frac{π}{4} - \alpha $. Since $ \alpha > \frac{π}{4} $, $ \frac{π}{4} - \alpha < \frac{π}{4} - \frac{π}{4} = 0 $.

So, the range of $ x - \alpha $ is $ \left[ \frac{−3π}{4} - \alpha, \frac{π}{4} - \alpha \right) $. This interval lies within $ \left( \frac{-5π}{4}, 0 \right) $.


The interval $ \left[ \frac{−3π}{4} - \alpha, \frac{π}{4} - \alpha \right) $ spans across $ -π $. The point where the behavior of $ \cos^{-1}(\cos \theta) $ changes is at $ \theta = -π $. So, we need to consider the value of $ x $ where $ x - \alpha = -π $, which is $ x = \alpha - π $.

Let's check if $ x = \alpha - π $ is within the given domain $ \left[ \frac{−3π}{4}, \frac{π}{4} \right] $.

Using the range $ \frac{π}{4} < \alpha < \frac{π}{2} $, we subtract $ π $: $ \frac{π}{4} - π < \alpha - π < \frac{π}{2} - π $.

This gives $ \frac{-3π}{4} < \alpha - π < \frac{-π}{2} $.

Since $ \frac{-3π}{4} < \alpha - π < \frac{-π}{2} $, the value $ x = \alpha - π $ is indeed within the interval $ \left[ \frac{−3π}{4}, \frac{π}{4} \right] $.

Therefore, the simplified form will be piecewise, splitting at $ x = \alpha - π $.


Case 1: $ x \in [\alpha - π, \frac{π}{4}] $.

If $ x \in [\alpha - π, \frac{π}{4}] $, then $ x - \alpha \in [\alpha - π - \alpha, \frac{π}{4} - \alpha] = [-π, \frac{π}{4} - \alpha] $.

As shown earlier, $ -\frac{π}{4} < \frac{π}{4} - \alpha < 0 $.

So, for $ x \in [\alpha - π, \frac{π}{4}] $, $ x - \alpha \in [-π, \frac{π}{4} - \alpha) $. This interval is a subset of $ [-π, 0) $.

For $ \theta \in [-π, 0) $, $ \cos^{-1}(\cos \theta) = -\theta $.

Thus, for $ x \in [\alpha - π, \frac{π}{4}] $, $ \cos^{-1}(\cos(x - \alpha)) = -(x - \alpha) = \alpha - x $.


Case 2: $ x \in [\frac{−3π}{4}, \alpha - π) $.

If $ x \in [\frac{−3π}{4}, \alpha - π) $, then $ x - \alpha \in [\frac{−3π}{4} - \alpha, \alpha - π - \alpha) = [\frac{−3π}{4} - \alpha, -π) $.

As shown earlier, $ \frac{-5π}{4} < \frac{−3π}{4} - \alpha < -π $.

So, for $ x \in [\frac{−3π}{4}, \alpha - π) $, $ x - \alpha \in [\frac{−3π}{4} - \alpha, -π) $. This interval is a subset of $ (-2π, -π) $. Note that $ \cos^{-1}(\cos \theta) = \theta + 2\pi $ for $ \theta \in [-2\pi, -\pi] $. Our interval is contained within $ (-2\pi, -\pi] $.

Thus, for $ x \in [\frac{−3π}{4}, \alpha - π) $, $ \cos^{-1}(\cos(x - \alpha)) = (x - \alpha) + 2π = x - \alpha + 2π $.


Combining the results from the two cases, the simplified form of the expression depends on the value of $ x $ relative to $ \alpha - π $.

The simplified form is:

$ \cos^{-1} \left( \frac{3}{5} \cos x + \frac{4}{5} \sin x \right) = \begin{cases} 2π + x - \alpha & , & x \in \left[ \frac{−3π}{4}, \alpha - π \right) \\ \alpha - x & , & x \in \left[ \alpha - π, \frac{π}{4} \right] \end{cases} $

where $ \alpha = \tan^{-1} \left( \frac{4}{3} \right) $.

Question 14. Prove that $\sin^{-1} \frac{8}{17} + \sin^{−1} \frac{3}{5} = \sin^{−1} \frac{77}{85}$

Answer:

Given:

The equation $ \sin^{-1} \frac{8}{17} + \sin^{−1} \frac{3}{5} = \sin^{−1} \frac{77}{85} $


To Prove:

The given equation is true.


Proof:

We will use the identity for the sum of two inverse sines:

$ \sin^{-1} x + \sin^{-1} y = \sin^{-1} (x \sqrt{1 - y^2} + y \sqrt{1 - x^2}) $

This identity is valid for $ x \ge 0 $, $ y \ge 0 $, and $ x^2 + y^2 \le 1 $.

In this problem, we have $ x = \frac{8}{17} $ and $ y = \frac{3}{5} $. Both $ x $ and $ y $ are positive.

Let's check the condition $ x^2 + y^2 \le 1 $:

$ x^2 = \left(\frac{8}{17}\right)^2 = \frac{64}{289} $

$ y^2 = \left(\frac{3}{5}\right)^2 = \frac{9}{25} $

$ x^2 + y^2 = \frac{64}{289} + \frac{9}{25} $

To add these fractions, we find a common denominator, which is $ 289 \times 25 = 7225 $.

$ x^2 + y^2 = \frac{64 \times 25}{289 \times 25} + \frac{9 \times 289}{25 \times 289} = \frac{1600}{7225} + \frac{2601}{7225} = \frac{1600 + 2601}{7225} = \frac{4201}{7225} $

Since $ 4201 < 7225 $, we have $ x^2 + y^2 = \frac{4201}{7225} < 1 $.

Thus, the condition $ x \ge 0, y \ge 0 $, and $ x^2 + y^2 \le 1 $ is satisfied, and the formula $ \sin^{-1} x + \sin^{-1} y = \sin^{-1} (x \sqrt{1 - y^2} + y \sqrt{1 - x^2}) $ is applicable.


Now we calculate the terms needed for the formula:

$ \sqrt{1 - x^2} = \sqrt{1 - \left(\frac{8}{17}\right)^2} = \sqrt{1 - \frac{64}{289}} = \sqrt{\frac{289 - 64}{289}} = \sqrt{\frac{225}{289}} = \frac{\sqrt{225}}{\sqrt{289}} = \frac{15}{17} $

$ \sqrt{1 - y^2} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{25 - 9}{25}} = \sqrt{\frac{16}{25}} = \frac{\sqrt{16}}{\sqrt{25}} = \frac{4}{5} $


Substitute these values into the formula for $ \sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} $:

$ \sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} = \sin^{-1} \left( \left(\frac{8}{17}\right) \sqrt{1 - \left(\frac{3}{5}\right)^2} + \left(\frac{3}{5}\right) \sqrt{1 - \left(\frac{8}{17}\right)^2} \right) $

$ = \sin^{-1} \left( \frac{8}{17} \times \frac{4}{5} + \frac{3}{5} \times \frac{15}{17} \right) $

$ = \sin^{-1} \left( \frac{8 \times 4}{17 \times 5} + \frac{3 \times 15}{5 \times 17} \right) $

$ = \sin^{-1} \left( \frac{32}{85} + \frac{45}{85} \right) $

$ = \sin^{-1} \left( \frac{32 + 45}{85} \right) $

$ = \sin^{-1} \left( \frac{77}{85} \right) $

This is the Right Hand Side (RHS) of the given equation.


Therefore, we have proved that $ \sin^{-1} \frac{8}{17} + \sin^{−1} \frac{3}{5} = \sin^{−1} \frac{77}{85} $.

Hence proved.


Alternate Solution:

Let $ A = \sin^{-1} \frac{8}{17} $ and $ B = \sin^{-1} \frac{3}{5} $.

Then $ \sin A = \frac{8}{17} $ and $ \sin B = \frac{3}{5} $.

Since $ 0 < \frac{8}{17} < 1 $, $ A $ is in the first quadrant, i.e., $ 0 < A < \frac{\pi}{2} $.

Since $ 0 < \frac{3}{5} < 1 $, $ B $ is in the first quadrant, i.e., $ 0 < B < \frac{\pi}{2} $.

We need to find $ \sin(A+B) $. For this, we need $ \cos A $ and $ \cos B $. Since $ A $ and $ B $ are in the first quadrant, their cosines are positive.

$ \cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{8}{17}\right)^2} = \sqrt{1 - \frac{64}{289}} = \sqrt{\frac{225}{289}} = \frac{15}{17} $

$ \cos B = \sqrt{1 - \sin^2 B} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} $

Using the angle sum identity for sine:

$ \sin(A+B) = \sin A \cos B + \cos A \sin B $

$ = \left(\frac{8}{17}\right) \left(\frac{4}{5}\right) + \left(\frac{15}{17}\right) \left(\frac{3}{5}\right) $

$ = \frac{32}{85} + \frac{45}{85} $

$ = \frac{32 + 45}{85} = \frac{77}{85} $

So, $ \sin(A+B) = \frac{77}{85} $.

We know that $ 0 < A < \frac{\pi}{2} $ and $ 0 < B < \frac{\pi}{2} $. Therefore, $ 0 < A+B < \pi $.

To conclude $ A+B = \sin^{-1} \frac{77}{85} $, we need to ensure that $ A+B $ lies within the principal value range of $ \sin^{-1} $, which is $ [-\frac{\pi}{2}, \frac{\pi}{2}] $.

Since $ \sin(A+B) = \frac{77}{85} > 0 $, the angle $ A+B $ must be in either the first or second quadrant. As $ 0 < A+B < \pi $, this is consistent.

To check if $ A+B \le \frac{\pi}{2} $, we can compare $ \sin^{-1} \frac{8}{17} $ with $ \frac{\pi}{2} - \sin^{-1} \frac{3}{5} = \cos^{-1} \frac{3}{5} $.

Is $ \sin^{-1} \frac{8}{17} \le \cos^{-1} \frac{3}{5} $?

Since both angles are in $ (0, \frac{\pi}{2}) $, this is equivalent to checking if $ \sin(\sin^{-1} \frac{8}{17}) \le \sin(\cos^{-1} \frac{3}{5}) $.

$ \sin(\sin^{-1} \frac{8}{17}) = \frac{8}{17} $.

$ \sin(\cos^{-1} \frac{3}{5}) = \sqrt{1 - \cos^2(\cos^{-1} \frac{3}{5})} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} $.

Comparing $ \frac{8}{17} $ and $ \frac{4}{5} $: $ \frac{8}{17} = \frac{40}{85} $ and $ \frac{4}{5} = \frac{68}{85} $.

Since $ \frac{40}{85} < \frac{68}{85} $, we have $ \frac{8}{17} < \frac{4}{5} $.

Since the sine function is increasing in $ [0, \frac{\pi}{2}] $, $ \sin^{-1} \frac{8}{17} < \sin^{-1} \frac{4}{5} $.

Also, $ \cos^{-1} \frac{3}{5} = \sin^{-1} \frac{4}{5} $ (since $ \frac{3}{5} > 0 $).

Thus, $ \sin^{-1} \frac{8}{17} < \cos^{-1} \frac{3}{5} $.

Adding $ \sin^{-1} \frac{3}{5} $ to both sides: $ \sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} < \cos^{-1} \frac{3}{5} + \sin^{-1} \frac{3}{5} $.

Using the identity $ \sin^{-1} z + \cos^{-1} z = \frac{\pi}{2} $, we get $ \cos^{-1} \frac{3}{5} + \sin^{-1} \frac{3}{5} = \frac{\pi}{2} $.

So, $ \sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} < \frac{\pi}{2} $.

Since $ A+B = \sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} $ is positive and less than $ \frac{\pi}{2} $, $ A+B $ lies in the interval $ (0, \frac{\pi}{2}) $. This interval is within the principal value range $ [-\frac{\pi}{2}, \frac{\pi}{2}] $.

Therefore, we can conclude $ A+B = \sin^{-1} (\sin(A+B)) $.

$ A+B = \sin^{-1} \left( \frac{77}{85} \right) $.

Substituting back the values of A and B, we get:

$ \sin^{-1} \frac{8}{17} + \sin^{-1} \frac{3}{5} = \sin^{-1} \frac{77}{85} $.

Hence proved.

Question 15. Show that $\sin^{-1} \frac{5}{13} + \cos^{−1} \frac{3}{5} = \tan^{−1} \frac{63}{16}$

Answer:

Given:

The equation $ \sin^{-1} \frac{5}{13} + \cos^{−1} \frac{3}{5} = \tan^{−1} \frac{63}{16} $


To Prove:

The given equation is true.


Proof:

We will convert the terms on the Left Hand Side (LHS) to inverse tangent form using trigonometric identities.

Let $ \theta_1 = \sin^{-1} \frac{5}{13} $. Then $ \sin \theta_1 = \frac{5}{13} $. Since $ \frac{5}{13} > 0 $, $ \theta_1 $ is in the first quadrant ($ 0 < \theta_1 < \frac{\pi}{2} $).

We find $ \cos \theta_1 $ using $ \cos \theta_1 = \sqrt{1 - \sin^2 \theta_1} $ (positive root since $ \theta_1 $ is in Q1):

$ \cos \theta_1 = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{169 - 25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13} $

Now, find $ \tan \theta_1 $:

$ \tan \theta_1 = \frac{\sin \theta_1}{\cos \theta_1} = \frac{5/13}{12/13} = \frac{5}{12} $

So, $ \sin^{-1} \frac{5}{13} = \tan^{-1} \frac{5}{12} $.


Let $ \theta_2 = \cos^{-1} \frac{3}{5} $. Then $ \cos \theta_2 = \frac{3}{5} $. Since $ \frac{3}{5} > 0 $, $ \theta_2 $ is in the first quadrant ($ 0 < \theta_2 < \frac{\pi}{2} $).

We find $ \sin \theta_2 $ using $ \sin \theta_2 = \sqrt{1 - \cos^2 \theta_2} $ (positive root since $ \theta_2 $ is in Q1):

$ \sin \theta_2 = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{25 - 9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5} $

Now, find $ \tan \theta_2 $:

$ \tan \theta_2 = \frac{\sin \theta_2}{\cos \theta_2} = \frac{4/5}{3/5} = \frac{4}{3} $

So, $ \cos^{-1} \frac{3}{5} = \tan^{-1} \frac{4}{3} $.


Now, the LHS of the given equation is $ \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5} = \tan^{-1} \frac{5}{12} + \tan^{-1} \frac{4}{3} $.

We use the identity $ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y}{1-xy} \right) $, which is valid when $ xy < 1 $.

Here, $ x = \frac{5}{12} $ and $ y = \frac{4}{3} $.

Check $ xy $: $ xy = \frac{5}{12} \times \frac{4}{3} = \frac{20}{36} = \frac{5}{9} $. Since $ \frac{5}{9} < 1 $, the identity is applicable.

LHS = $ \tan^{-1} \left( \frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{12} \times \frac{4}{3}} \right) $

Calculate the numerator: $ \frac{5}{12} + \frac{4}{3} = \frac{5}{12} + \frac{4 \times 4}{3 \times 4} = \frac{5}{12} + \frac{16}{12} = \frac{5+16}{12} = \frac{21}{12} $

Calculate the denominator: $ 1 - \frac{5}{9} = \frac{9}{9} - \frac{5}{9} = \frac{9-5}{9} = \frac{4}{9} $

LHS = $ \tan^{-1} \left( \frac{\frac{21}{12}}{\frac{4}{9}} \right) = \tan^{-1} \left( \frac{21}{12} \times \frac{9}{4} \right) $

Simplify the fraction:

$ \frac{21}{12} \times \frac{9}{4} = \frac{\cancel{21}^{7}}{\cancel{12}_{4}} \times \frac{9}{4} = \frac{7 \times 9}{4 \times 4} = \frac{63}{16} $

LHS = $ \tan^{-1} \frac{63}{16} $.

This is the Right Hand Side (RHS) of the given equation.


Therefore, we have shown that $ \sin^{-1} \frac{5}{13} + \cos^{−1} \frac{3}{5} = \tan^{−1} \frac{63}{16} $.

Hence proved.


Alternate Solution:

Let LHS = $ \sin^{-1} \frac{5}{13} + \cos^{−1} \frac{3}{5} $. Let RHS = $ \tan^{−1} \frac{63}{16} $.

Let $ A = \sin^{-1} \frac{5}{13} $ and $ B = \cos^{-1} \frac{3}{5} $. Then $ \sin A = \frac{5}{13} $ and $ \cos B = \frac{3}{5} $.

Since $ \frac{5}{13} $ and $ \frac{3}{5} $ are positive and less than 1, both $ A $ and $ B $ are in the first quadrant, i.e., $ 0 < A < \frac{\pi}{2} $ and $ 0 < B < \frac{\pi}{2} $.

This implies $ 0 < A+B < \pi $.

We can find $ \tan A $ and $ \tan B $ as calculated in the previous method:

$ \tan A = \frac{5}{12} $

$ \tan B = \frac{4}{3} $

Now, consider $ \tan(A+B) $:

$ \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} $

$ = \frac{\frac{5}{12} + \frac{4}{3}}{1 - \frac{5}{12} \times \frac{4}{3}} $

As calculated before, the numerator is $ \frac{21}{12} $ and the denominator is $ \frac{4}{9} $.

$ \tan(A+B) = \frac{\frac{21}{12}}{\frac{4}{9}} = \frac{21}{12} \times \frac{9}{4} = \frac{63}{16} $

So, $ \tan(A+B) = \frac{63}{16} $.

Taking the inverse tangent of both sides, we get $ A+B = \tan^{-1} \frac{63}{16} + n\pi $ for some integer $ n $.

Since $ 0 < A < \frac{\pi}{2} $ and $ 0 < B < \frac{\pi}{2} $, we have $ 0 < A+B < \pi $.

Also, since $ \tan(A+B) = \frac{63}{16} > 0 $, the angle $ A+B $ must lie in the interval $ (0, \frac{\pi}{2}) $ (because tangent is positive in the first and third quadrants, and $ A+B $ is in $ (0, \pi) $).

The principal value of $ \tan^{-1} \frac{63}{16} $ also lies in the interval $ (0, \frac{\pi}{2}) $.

Since $ A+B $ lies in the principal value range of $ \tan^{-1} $ and $ \tan(A+B) = \frac{63}{16} $, it must be that $ A+B = \tan^{-1} \frac{63}{16} $.

Substituting back the values of $ A $ and $ B $:

$ \sin^{-1} \frac{5}{13} + \cos^{-1} \frac{3}{5} = \tan^{-1} \frac{63}{16} $.

Hence proved.

Question 16. Prove that $\tan^{-1} \frac{1}{4} + \tan^{−1} \frac{2}{9} = \sin^{−1} \frac{1}{\sqrt{5}}$

Answer:

Given:

The equation $ \tan^{-1} \frac{1}{4} + \tan^{−1} \frac{2}{9} = \sin^{−1} \frac{1}{\sqrt{5}} $


To Prove:

The given equation is true.


Proof:

Consider the Left Hand Side (LHS) of the equation:

$ \text{LHS} = \tan^{-1} \frac{1}{4} + \tan^{−1} \frac{2}{9} $

We use the tangent addition formula for inverse tangents: $ \tan^{-1} x + \tan^{-1} y = \tan^{-1} \left( \frac{x+y}{1-xy} \right) $, which is valid for $ xy < 1 $.

Here, $ x = \frac{1}{4} $ and $ y = \frac{2}{9} $.

Let's check the condition $ xy < 1 $:

$ xy = \frac{1}{4} \times \frac{2}{9} = \frac{2}{36} = \frac{1}{18} $

Since $ \frac{1}{18} < 1 $, the formula is applicable.

Apply the formula to the LHS:

$ \text{LHS} = \tan^{-1} \left( \frac{\frac{1}{4} + \frac{2}{9}}{1 - \frac{1}{4} \times \frac{2}{9}} \right) $

Calculate the numerator:

$ \frac{1}{4} + \frac{2}{9} = \frac{1 \times 9}{4 \times 9} + \frac{2 \times 4}{9 \times 4} = \frac{9}{36} + \frac{8}{36} = \frac{9+8}{36} = \frac{17}{36} $

Calculate the denominator:

$ 1 - \frac{1}{18} = \frac{18}{18} - \frac{1}{18} = \frac{18-1}{18} = \frac{17}{18} $

Substitute these values back into the expression for LHS:

$ \text{LHS} = \tan^{-1} \left( \frac{\frac{17}{36}}{\frac{17}{18}} \right) $

Simplify the fraction:

$ \frac{\frac{17}{36}}{\frac{17}{18}} = \frac{17}{36} \times \frac{18}{17} = \frac{\cancel{17}}{\cancel{36}_{2}} \times \frac{\cancel{18}^{1}}{\cancel{17}} = \frac{1}{2} $

So, $ \text{LHS} = \tan^{-1} \frac{1}{2} $.


Now, consider the Right Hand Side (RHS) of the equation:

$ \text{RHS} = \sin^{−1} \frac{1}{\sqrt{5}} $

We need to show that $ \tan^{-1} \frac{1}{2} = \sin^{-1} \frac{1}{\sqrt{5}} $.

Let $ \theta = \tan^{-1} \frac{1}{2} $. Then $ \tan \theta = \frac{1}{2} $.

Since $ \frac{1}{2} > 0 $, $ \theta $ is in the first quadrant ($ 0 < \theta < \frac{\pi}{2} $).

We can construct a right-angled triangle with the opposite side = 1 and the adjacent side = 2. The hypotenuse will be $ \sqrt{(\text{opposite})^2 + (\text{adjacent})^2} = \sqrt{1^2 + 2^2} = \sqrt{1 + 4} = \sqrt{5} $.

Now, find $ \sin \theta $ from this triangle:

$ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{5}} $

So, $ \sin(\tan^{-1} \frac{1}{2}) = \frac{1}{\sqrt{5}} $.

Since $ \theta = \tan^{-1} \frac{1}{2} $ is in the first quadrant, which is within the principal value range of $ \sin^{-1} $, we can write:

$ \theta = \sin^{-1} \frac{1}{\sqrt{5}} $

Therefore, $ \tan^{-1} \frac{1}{2} = \sin^{-1} \frac{1}{\sqrt{5}} $.

Since LHS $ = \tan^{-1} \frac{1}{2} $ and RHS $ = \sin^{-1} \frac{1}{\sqrt{5}} $, we have LHS = RHS.


Therefore, we have proved that $ \tan^{-1} \frac{1}{4} + \tan^{−1} \frac{2}{9} = \sin^{−1} \frac{1}{\sqrt{5}} $.

Hence proved.

Question 17. Find the value of $4 \tan^{-1} \frac{1}{5} − \tan^{−1} \frac{1}{239}$

Answer:

We want to find the value of the expression $4 \tan^{-1} \frac{1}{5} − \tan^{−1} \frac{1}{239}$.


First, let's simplify the term $4 \tan^{-1} \frac{1}{5}$. We can write this as $2 \left( 2 \tan^{-1} \frac{1}{5} \right) $.

We use the identity $2 \tan^{-1} x = \tan^{-1} \frac{2x}{1-x^2}$, which is valid for $ |x| < 1 $.

Let $ x = \frac{1}{5} $. Since $ |\frac{1}{5}| = \frac{1}{5} < 1 $, the identity can be applied.

$ 2 \tan^{-1} \frac{1}{5} = \tan^{-1} \frac{2 \times \frac{1}{5}}{1 - \left(\frac{1}{5}\right)^2} = \tan^{-1} \frac{\frac{2}{5}}{1 - \frac{1}{25}} = \tan^{-1} \frac{\frac{2}{5}}{\frac{25-1}{25}} = \tan^{-1} \frac{\frac{2}{5}}{\frac{24}{25}} $

$ = \tan^{-1} \left( \frac{2}{5} \times \frac{25}{24} \right) = \tan^{-1} \left( \frac{\cancel{2}^{1}}{\cancel{5}^{1}} \times \frac{\cancel{25}^{5}}{\cancel{24}^{12}} \right) = \tan^{-1} \frac{5}{12} $

So, $ 2 \tan^{-1} \frac{1}{5} = \tan^{-1} \frac{5}{12} $.


Now, we need to calculate $ 4 \tan^{-1} \frac{1}{5} = 2 \left( 2 \tan^{-1} \frac{1}{5} \right) = 2 \tan^{-1} \frac{5}{12} $.

Let $ x = \frac{5}{12} $. Since $ |\frac{5}{12}| = \frac{5}{12} < 1 $, we can apply the same identity again.

$ 2 \tan^{-1} \frac{5}{12} = \tan^{-1} \frac{2 \times \frac{5}{12}}{1 - \left(\frac{5}{12}\right)^2} = \tan^{-1} \frac{\frac{10}{12}}{1 - \frac{25}{144}} = \tan^{-1} \frac{\frac{5}{6}}{\frac{144-25}{144}} = \tan^{-1} \frac{\frac{5}{6}}{\frac{119}{144}} $

$ = \tan^{-1} \left( \frac{5}{6} \times \frac{144}{119} \right) = \tan^{-1} \left( \frac{5}{\cancel{6}^{1}} \times \frac{\cancel{144}^{24}}{119} \right) = \tan^{-1} \frac{120}{119} $

So, $ 4 \tan^{-1} \frac{1}{5} = \tan^{-1} \frac{120}{119} $.


The original expression is $ 4 \tan^{-1} \frac{1}{5} − \tan^{−1} \frac{1}{239} $. Substituting the result from the previous step:

$ \tan^{-1} \frac{120}{119} − \tan^{−1} \frac{1}{239} $

We use the identity $ \tan^{-1} x - \tan^{-1} y = \tan^{-1} \frac{x-y}{1+xy} $, which is valid for $ xy > -1 $.

Here, $ x = \frac{120}{119} $ and $ y = \frac{1}{239} $.

Check $ xy $: $ xy = \frac{120}{119} \times \frac{1}{239} = \frac{120}{28441} $. Since $ \frac{120}{28441} > -1 $, the identity can be applied.

The expression becomes:

$ \tan^{-1} \left( \frac{\frac{120}{119} - \frac{1}{239}}{1 + \frac{120}{119} \times \frac{1}{239}} \right) $

Calculate the numerator:

$ \frac{120}{119} - \frac{1}{239} = \frac{120 \times 239 - 1 \times 119}{119 \times 239} = \frac{28680 - 119}{28441} = \frac{28561}{28441} $

Calculate the denominator:

$ 1 + \frac{120}{119} \times \frac{1}{239} = 1 + \frac{120}{28441} = \frac{28441 + 120}{28441} = \frac{28561}{28441} $

Substitute the numerator and denominator back into the expression:

$ \tan^{-1} \left( \frac{\frac{28561}{28441}}{\frac{28561}{28441}} \right) $

$ = \tan^{-1} (1) $


The principal value of $ \tan^{-1} (1) $ is $ \frac{\pi}{4} $.

Let's check the range of the result. Since $ \frac{1}{5} \in (0, 1) $, $ \tan^{-1} \frac{1}{5} \in (0, \frac{\pi}{4}) $.

So $ 4 \tan^{-1} \frac{1}{5} \in (0, \pi) $. However, we found $ 4 \tan^{-1} \frac{1}{5} = \tan^{-1} \frac{120}{119} $. Since $ \frac{120}{119} > 0 $, and the range of $ \tan^{-1} $ is $ (-\frac{\pi}{2}, \frac{\pi}{2}) $, $ \tan^{-1} \frac{120}{119} \in (0, \frac{\pi}{2}) $.

Let $ A = 4 \tan^{-1} \frac{1}{5} = \tan^{-1} \frac{120}{119} $ and $ B = \tan^{-1} \frac{1}{239} $. Both $ A $ and $ B $ are in $ (0, \frac{\pi}{2}) $.

We are calculating $ A - B $. The range of $ A - B $ is $ (-\frac{\pi}{2}, \frac{\pi}{2}) $.

Since $ \tan(A-B) = 1 $, and $ A-B $ is in the range $ (-\frac{\pi}{2}, \frac{\pi}{2}) $, the value of $ A-B $ must be the principal value of $ \tan^{-1}(1) $.

The principal value of $ \tan^{-1} (1) $ is $ \frac{\pi}{4} $.


The value of $ 4 \tan^{-1} \frac{1}{5} − \tan^{−1} \frac{1}{239} $ is $ \frac{\pi}{4} $.

The final answer is $ \frac{\pi}{4} $.

Question 18. Show that $\tan \left( \frac{1}{2} \sin^{−1} \frac{3}{4} \right) = \frac{4 − \sqrt{7}}{3}$ and justify why the other value $\frac{4 + \sqrt{7}}{3}$ is ignored?

Answer:

Given: We need to find the value of $ \tan \left( \frac{1}{2} \sin^{−1} \frac{3}{4} \right) $ and show it is equal to $ \frac{4 − \sqrt{7}}{3} $. We also need to justify why the other potential value is ignored.


Let $ \theta = \sin^{-1} \frac{3}{4} $.

The principal value of $ \sin^{-1} x $ lies in the interval $ \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] $. Since $ 0 < \frac{3}{4} < 1 $, the value of $ \theta = \sin^{-1} \frac{3}{4} $ lies in the first quadrant.

So, $ 0 < \theta < \frac{\pi}{2} $.

We are asked to find the value of $ \tan \left( \frac{1}{2} \sin^{-1} \frac{3}{4} \right) = \tan \left( \frac{\theta}{2} \right) $.

Since $ 0 < \theta < \frac{\pi}{2} $, dividing by 2, we get:

$ 0 < \frac{\theta}{2} < \frac{\pi}{4} $

For any angle $ \phi $ in the interval $ \left( 0, \frac{\pi}{4} \right) $, the value of $ \tan \phi $ is positive and less than $ \tan \frac{\pi}{4} = 1 $. Thus, the value of $ \tan \left( \frac{\theta}{2} \right) $ must lie in the interval $ (0, 1) $.


We use the half-angle tangent identity related to sine: $ \sin \theta = \frac{2 \tan \frac{\theta}{2}}{1 + \tan^2 \frac{\theta}{2}} $.

Let $ t = \tan \frac{\theta}{2} $. Substituting this and the given value of $ \sin \theta = \frac{3}{4} $, we get:

$ \frac{3}{4} = \frac{2t}{1 + t^2} $

Cross-multiplying gives:

$ 3(1 + t^2) = 4(2t) $

$ 3 + 3t^2 = 8t $

Rearranging the terms, we get a quadratic equation in $ t $:

$ 3t^2 - 8t + 3 = 0 $


We solve this quadratic equation for $ t $ using the quadratic formula $ t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} $. Here, $ a = 3 $, $ b = -8 $, $ c = 3 $.

$ t = \frac{-(-8) \pm \sqrt{(-8)^2 - 4(3)(3)}}{2(3)} $

$ t = \frac{8 \pm \sqrt{64 - 36}}{6} $

$ t = \frac{8 \pm \sqrt{28}}{6} $

$ t = \frac{8 \pm 2\sqrt{7}}{6} $

Factoring out 2 from the numerator and simplifying:

$ t = \frac{2(4 \pm \sqrt{7})}{6} $

$ t = \frac{4 \pm \sqrt{7}}{3} $

The quadratic equation gives two possible values for $ t = \tan \frac{\theta}{2} $: $ \frac{4 + \sqrt{7}}{3} $ and $ \frac{4 - \sqrt{7}}{3} $.


Justification for ignoring the other value:

We determined earlier that $ 0 < \frac{\theta}{2} < \frac{\pi}{4} $ based on the principal value of $ \sin^{-1} \frac{3}{4} $. Consequently, the value of $ \tan \frac{\theta}{2} $ must lie in the interval $ (0, 1) $. That is, $ 0 < \tan \frac{\theta}{2} < 1 $.

Let's evaluate the two possible values obtained from the quadratic equation:

Value 1: $ t_1 = \frac{4 + \sqrt{7}}{3} $

Since $ \sqrt{7} > 0 $, $ 4 + \sqrt{7} > 4 $. Therefore, $ t_1 = \frac{4 + \sqrt{7}}{3} > \frac{4}{3} > 1 $. This value is greater than 1.

Value 2: $ t_2 = \frac{4 - \sqrt{7}}{3} $

To determine if this value is in the interval $ (0, 1) $, we check if $ 0 < 4 - \sqrt{7} < 3 $.

$ 4 - \sqrt{7} > 0 $ is equivalent to $ 4 > \sqrt{7} $. Squaring both sides (both positive), $ 16 > 7 $, which is true. So $ 4 - \sqrt{7} > 0 $.

$ 4 - \sqrt{7} < 3 $ is equivalent to $ 1 < \sqrt{7} $. Squaring both sides (both positive), $ 1 < 7 $, which is true. So $ 4 - \sqrt{7} < 3 $.

Since $ 0 < 4 - \sqrt{7} < 3 $, dividing by 3, we get $ 0 < \frac{4 - \sqrt{7}}{3} < 1 $.

The value $ \frac{4 - \sqrt{7}}{3} $ lies in the interval $ (0, 1) $.


Since the value of $ \tan \left( \frac{\theta}{2} \right) $ must be in the interval $ (0, 1) $, the value $ \frac{4 + \sqrt{7}}{3} $ is extraneous and is ignored.

The correct value is $ \frac{4 - \sqrt{7}}{3} $.

Thus, $ \tan \left( \frac{1}{2} \sin^{−1} \frac{3}{4} \right) = \frac{4 − \sqrt{7}}{3} $.

Hence shown.

Question 19. If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

$\tan \left[ \tan^{−1} \left( \frac{d}{1 + a_1a_2} \right) + \tan^{−1} \left( \frac{d}{1 + a_2a_3} \right) + \tan^{−1} \left( \frac{d}{1 + a_3a_4} \right) + … + \tan^{−1} \left( \frac{d}{1 + a_{n−1}a_n} \right) \right]$

Answer:

Given:

a1, a2, a3, ..., an is an arithmetic progression with common difference d.

To Evaluate:

$ \tan \left[ \tan^{−1} \left( \frac{d}{1 + a_1a_2} \right) + \tan^{−1} \left( \frac{d}{1 + a_2a_3} \right) + \tan^{−1} \left( \frac{d}{1 + a_3a_4} \right) + … + \tan^{−1} \left( \frac{d}{1 + a_{n−1}a_n} \right) \right] $


Solution:

The given expression is the tangent of a sum of inverse tangents. Let's consider the general term in the sum inside the tangent function.

The terms in the sum are of the form $ \tan^{−1} \left( \frac{d}{1 + a_k a_{k+1}} \right) $ for $ k = 1, 2, ..., n-1 $.

Since a1, a2, ..., an is an arithmetic progression with common difference d, we know that the difference between consecutive terms is constant:

ak+1 - ak = d

(Definition of AP)

We can substitute this into the numerator of the general term:

$ \tan^{−1} \left( \frac{a_{k+1} - a_k}{1 + a_k a_{k+1}} \right) $

We use the inverse tangent identity: $ \tan^{-1} x - \tan^{-1} y = \tan^{-1} \left( \frac{x-y}{1+xy} \right) $. This identity is valid when $ xy > -1 $.

Assuming that $ a_k a_{k+1} > -1 $ for all $ k = 1, 2, ..., n-1 $, we can apply this identity with $ x = a_{k+1} $ and $ y = a_k $.

Thus, the general term becomes:

$ \tan^{−1} \left( \frac{a_{k+1} - a_k}{1 + a_k a_{k+1}} \right) = \tan^{-1} a_{k+1} - \tan^{-1} a_k $


Now, let's write the sum inside the tangent function using this form:

$ S = \sum_{k=1}^{n-1} \tan^{−1} \left( \frac{d}{1 + a_k a_{k+1}} \right) = \sum_{k=1}^{n-1} (\tan^{-1} a_{k+1} - \tan^{-1} a_k) $

This is a telescoping sum. Let's expand the sum:

$ S = (\tan^{-1} a_2 - \tan^{-1} a_1) + (\tan^{-1} a_3 - \tan^{-1} a_2) + (\tan^{-1} a_4 - \tan^{-1} a_3) + \dots + (\tan^{-1} a_n - \tan^{-1} a_{n-1}) $

The intermediate terms cancel out:

$ S = \tan^{-1} a_n - \tan^{-1} a_1 $


The original expression is $ \tan(S) = \tan(\tan^{-1} a_n - \tan^{-1} a_1) $.

We use the tangent subtraction formula: $ \tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B} $.

Let $ A = \tan^{-1} a_n $ and $ B = \tan^{-1} a_1 $. Then $ \tan A = \tan(\tan^{-1} a_n) = a_n $ and $ \tan B = \tan(\tan^{-1} a_1) = a_1 $, since the domain of the tangent function includes the range of the inverse tangent function for any real numbers $a_n$ and $a_1$.

Applying the formula for $ \tan(A-B) $, assuming $ 1 + \tan A \tan B \ne 0 $ (i.e., $ 1 + a_n a_1 \ne 0 $):

$ \tan(\tan^{-1} a_n - \tan^{-1} a_1) = \frac{\tan(\tan^{-1} a_n) - \tan(\tan^{-1} a_1)}{1 + \tan(\tan^{-1} a_n) \tan(\tan^{-1} a_1)} = \frac{a_n - a_1}{1 + a_n a_1} $

For an arithmetic progression, the $n$-th term is related to the first term by the formula:

an = a1 + (n-1)d

From this, we have:

an - a1 = (n-1)d

Substitute this difference into the expression:

$ \tan(S) = \frac{(n-1)d}{1 + a_1 a_n} $


Thus, under the assumptions that $ a_k a_{k+1} > -1 $ for all $ k = 1, 2, ..., n-1 $ and $ 1 + a_1 a_n \ne 0 $, the value of the given expression is $ \frac{(n-1)d}{1 + a_1 a_n} $.

Question 20 to 37 (Multiple Choice Questions)

Choose the correct answers from the given four options in each of the Exercises from 20 to 37 (M.C.Q.).

Question 20. Which of the following is the principal value branch of cos–1 x?

(A) $\left[ \frac{−π}{2}, \frac{π}{2} \right]$

(B) (0, π)

(C) [0, π]

(D) $(0, π) − \left\{ \frac{π}{2} \right\}$

Answer:

The correct option is (C).


Let's understand why the principal value branch of $\cos^{-1} x$ is $[0, \pi]$.

A function must be one-to-one (injective) and onto (surjective) to have an inverse function.

The cosine function, $\cos x$, defined over its natural domain $(-\infty, \infty)$, is not one-to-one because it is periodic. For example, $\cos(0) = 1$, $\cos(2\pi) = 1$, $\cos(-2\pi) = 1$, and so on. Multiple input values give the same output value.

To define the inverse cosine function, $\cos^{-1} x$, we must restrict the domain of the original cosine function so that it becomes one-to-one and retains its range.

The range of $\cos x$ is $[-1, 1]$. This range must be preserved in the restricted domain to ensure the inverse function is defined for all values in its natural domain $[-1, 1]$.

There are multiple intervals where $\cos x$ is one-to-one, for example:

  • $[0, \pi]$
  • $[\pi, 2\pi]$
  • $[-\pi, 0]$
  • $[-2\pi, -\pi]$, etc.

By convention, the principal value branch of the inverse cosine function is chosen by restricting the domain of $\cos x$ to the interval $[0, \pi]$. In this interval, the cosine function is one-to-one and its range is $[-1, 1]$.

Thus, the inverse cosine function $\cos^{-1} x$ has:

  • Domain: $[-1, 1]$
  • Principal Value Branch (Range): $[0, \pi]$

This means that for any value $x$ between $-1$ and $1$ (inclusive), $\cos^{-1} x$ is defined, and its value will always be an angle in the interval $[0, \pi]$.


Let's look at the options:

(A) $\left[ \frac{−π}{2}, \frac{π}{2} \right]$: This is the principal value branch for $\sin^{-1} x$ and $\tan^{-1} x$, not $\cos^{-1} x$. Cosine is not one-to-one on this interval (e.g., $\cos(-\pi/4) = \cos(\pi/4) = \frac{\sqrt{2}}{2}$).

(B) $(0, \pi)$: This interval excludes the endpoints $0$ and $\pi$. However, the range of $\cos^{-1} x$ includes $0$ (since $\cos^{-1}(1) = 0$) and $\pi$ (since $\cos^{-1}(-1) = \pi$). So, this is incorrect.

(C) $[0, \pi]$: This interval includes the endpoints $0$ and $\pi$. This is the standard and accepted principal value branch for $\cos^{-1} x$. Within this range, every value in the domain $[-1, 1]$ maps to a unique angle.

(D) $(0, \pi) − \left\{ \frac{π}{2} \right\}$: This interval excludes $0$, $\pi$, and $\pi/2$. This is not the principal value branch. The range of $\cos^{-1} x$ includes $\pi/2$ (since $\cos^{-1}(0) = \pi/2$).


Therefore, the principal value branch of $\cos^{-1} x$ is $[0, \pi]$.

Question 21. Which of the following is the principal value branch of cosec–1 x?

(A) $\left( \frac{−π}{2}, \frac{π}{2} \right)$

(B) $[0, π] − \left\{ \frac{π}{2} \right\}$

(C) $\left[ \frac{−π}{2}, \frac{π}{2} \right]$

(D) $\left[ \frac{−π}{2}, \frac{π}{2} \right] − \left\{0\right\}$

Answer:

The correct option is (D).


Let's determine the principal value branch of $\text{cosec}^{-1} x$.

The cosecant function is defined as $\text{cosec } x = \frac{1}{\sin x}$.

The domain of $\text{cosec } x$ is $\{x \in \mathbb{R} : x \neq n\pi, n \in \mathbb{Z}\}$.

The range of $\text{cosec } x$ is $(-\infty, -1] \cup [1, \infty)$.

To define the inverse function, $\text{cosec}^{-1} x$, we need to restrict the domain of $\text{cosec } x$ so that it becomes one-to-one and covers its entire range.

The standard convention for the principal value branch of $\text{cosec}^{-1} x$ is derived from the principal value branch of $\sin^{-1} x$, which is $\left[ \frac{−π}{2}, \frac{π}{2} \right]$.

However, $\text{cosec } x$ is not defined when $\sin x = 0$, which occurs at $x = n\pi$ for integer $n$. Within the interval $\left[ \frac{−π}{2}, \frac{π}{2} \right]$, $\sin x = 0$ only at $x = 0$.

Therefore, to make $\text{cosec } x$ one-to-one and defined on the chosen interval while preserving its range $(-\infty, -1] \cup [1, \infty)$, we restrict the domain of $\text{cosec } x$ to $\left[ \frac{−π}{2}, \frac{π}{2} \right]$ excluding the point where it is undefined, which is $0$.

So, the principal value branch of $\text{cosec}^{-1} x$ is $\left[ \frac{−π}{2}, \frac{π}{2} \right] - \{0\}$.


Let's evaluate the given options:

(A) $\left( \frac{−π}{2}, \frac{π}{2} \right)$: This interval excludes the endpoints $-\pi/2$ and $\pi/2$. However, $\text{cosec}^{-1}(1) = \pi/2$ and $\text{cosec}^{-1}(-1) = -\pi/2$, which are part of the range. Also, it includes $0$, where $\text{cosec } x$ is undefined.

(B) $[0, π] − \left\{ \frac{π}{2} \right\}$: This interval does not correspond to the standard principal value branch. It includes values where $\text{cosec } x$ is not one-to-one (e.g., $\text{cosec}(\pi/4) = \text{cosec}(3\pi/4) = \sqrt{2}$) and excludes values like $-\pi/2$.

(C) $\left[ \frac{−π}{2}, \frac{π}{2} \right]$: This interval includes $0$, where $\text{cosec } x$ is undefined. The range of $\text{cosec}^{-1} x$ cannot include a value where the original function was undefined.

(D) $\left[ \frac{−π}{2}, \frac{π}{2} \right] − \left\{0\right\}$: This interval correctly restricts the domain of $\text{cosec } x$ to make it one-to-one and covers the required range $(-\infty, -1] \cup [1, \infty)$, while excluding the point where $\text{cosec } x$ is undefined.


Thus, the principal value branch of $\text{cosec}^{-1} x$ is $\left[ \frac{−π}{2}, \frac{π}{2} \right] - \{0\}$.

Question 22. If 3tan–1 x + cot–1 x = π, then x equals

(A) 0

(B) 1

(C) –1

(D) $\frac{1}{2}$

Answer:

The correct option is (B).


The given equation is:

$3\tan^{-1} x + \cot^{-1} x = \pi$


We know the fundamental identity for inverse trigonometric functions:

$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$

This identity holds true for all real numbers $x$.


We can rewrite the given equation by splitting the term $3\tan^{-1} x$ as $2\tan^{-1} x + \tan^{-1} x$:

$2\tan^{-1} x + (\tan^{-1} x + \cot^{-1} x) = \pi$

Now, substitute the identity $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$ into the equation:

$2\tan^{-1} x + \frac{\pi}{2} = \pi$


Next, solve for $\tan^{-1} x$:

$2\tan^{-1} x = \pi - \frac{\pi}{2}$

$2\tan^{-1} x = \frac{2\pi - \pi}{2}$

$2\tan^{-1} x = \frac{\pi}{2}$

Divide both sides by 2:

$\tan^{-1} x = \frac{\pi}{4}$


To find the value of $x$, take the tangent of both sides of the equation:

$x = \tan\left(\frac{\pi}{4}\right)$

$x = 1$


Let's verify the solution $x=1$ by substituting it back into the original equation:

Left Hand Side (LHS) $= 3\tan^{-1}(1) + \cot^{-1}(1)$

We know that $\tan^{-1}(1) = \frac{\pi}{4}$ (since $\tan(\frac{\pi}{4}) = 1$ and $\frac{\pi}{4}$ is in the principal value branch $(-\frac{\pi}{2}, \frac{\pi}{2})$ of $\tan^{-1} x$).

We also know that $\cot^{-1}(1) = \frac{\pi}{4}$ (since $\cot(\frac{\pi}{4}) = 1$ and $\frac{\pi}{4}$ is in the principal value branch $(0, \pi)$ of $\cot^{-1} x$).

LHS $= 3\left(\frac{\pi}{4}\right) + \frac{\pi}{4}$

LHS $= \frac{3\pi}{4} + \frac{\pi}{4}$

LHS $= \frac{3\pi + \pi}{4}$

LHS $= \frac{4\pi}{4}$

LHS $= \pi$

Right Hand Side (RHS) $= \pi$

Since LHS = RHS, the solution $x=1$ is correct.

Question 23. The value of $\sin^{–1} \left( \cos \left( \frac{33π}{5} \right) \right)$

(A) $\frac{3π}{5}$

(B) $\frac{−7π}{5}$

(C) $\frac{π}{10}$

(D) $\frac{−π}{10}$

Answer:

The correct option is (D).


We are asked to find the value of $\sin^{–1} \left( \cos \left( \frac{33π}{5} \right) \right)$.


First, let's simplify the inner expression, $\cos \left( \frac{33π}{5} \right)$.

We can rewrite the angle $\frac{33π}{5}$ using the periodicity of the cosine function. The period of $\cos x$ is $2\pi$. We can write the angle as $6\pi + \frac{3π}{5}$:

$\frac{33π}{5} = \frac{30π}{5} + \frac{3π}{5} = 6π + \frac{3π}{5}$

Since $\cos(2n\pi + \theta) = \cos \theta$ for any integer $n$, we have:

$\cos \left( \frac{33π}{5} \right) = \cos \left( 6π + \frac{3π}{5} \right) = \cos \left( \frac{3π}{5} \right)$


Now the expression becomes $\sin^{–1} \left( \cos \left( \frac{3π}{5} \right) \right)$.

We need to express $\cos \left( \frac{3π}{5} \right)$ in terms of sine to use the property $\sin^{-1}(\sin \theta) = \theta$.

We use the identity $\cos \theta = \sin \left( \frac{\pi}{2} - \theta \right)$.

Let $\theta = \frac{3π}{5}$. Then,

$\cos \left( \frac{3π}{5} \right) = \sin \left( \frac{\pi}{2} - \frac{3π}{5} \right)$

Now, calculate the argument of the sine function:

$\frac{\pi}{2} - \frac{3π}{5} = \frac{5\pi}{10} - \frac{6π}{10} = \frac{5π - 6π}{10} = \frac{-π}{10}$

So, $\cos \left( \frac{3π}{5} \right) = \sin \left( \frac{-π}{10} \right)$.


Substitute this back into the original expression:

$\sin^{–1} \left( \cos \left( \frac{33π}{5} \right) \right) = \sin^{–1} \left( \cos \left( \frac{3π}{5} \right) \right) = \sin^{–1} \left( \sin \left( \frac{-π}{10} \right) \right)$


For $\sin^{-1}(\sin \theta) = \theta$ to hold, the angle $\theta$ must be within the principal value branch of $\sin^{-1} x$, which is $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$.

The angle we have is $\frac{-π}{10}$.

Let's check if $\frac{-π}{10}$ is in the interval $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$.

$-\frac{\pi}{2} = -\frac{5\pi}{10}$ and $\frac{\pi}{2} = \frac{5\pi}{10}$.

Since $-\frac{5π}{10} \leq \frac{-π}{10} \leq \frac{5π}{10}$, the angle $\frac{-π}{10}$ is within the principal value branch of $\sin^{-1} x$.


Therefore, $\sin^{–1} \left( \sin \left( \frac{-π}{10} \right) \right) = \frac{-π}{10}$.


The value of the expression is $\frac{-π}{10}$.

Question 24. The domain of the function cos–1 (2x – 1) is

(A) [0, 1]

(B) [–1, 1]

(C) ( –1, 1)

(D) [0, π]

Answer:

The correct option is (A).


We are asked to find the domain of the function $f(x) = \cos^{-1} (2x – 1)$.


The domain of the inverse cosine function, $\cos^{-1} u$, is the set of values $u$ for which the function is defined. This domain is $[-1, 1]$.

This means that for $\cos^{-1} u$ to be defined, the value of $u$ must satisfy the inequality:

$-1 \leq u \leq 1$


In our given function, the argument of the inverse cosine function is $u = 2x – 1$.

Therefore, for $\cos^{-1} (2x – 1)$ to be defined, the expression $2x – 1$ must lie in the interval $[-1, 1]$.

We must satisfy the inequality:

$-1 \leq 2x - 1 \leq 1$


Now, we need to solve this inequality for $x$. We can solve it by isolating $x$ in the middle part of the inequality.

First, add 1 to all parts of the inequality:

$-1 + 1 \leq 2x - 1 + 1 \leq 1 + 1$

This simplifies to:

$0 \leq 2x \leq 2$


Next, divide all parts of the inequality by 2:

$\frac{0}{2} \leq \frac{2x}{2} \leq \frac{2}{2}$

This simplifies to:

$0 \leq x \leq 1$


This inequality tells us that $x$ must be greater than or equal to 0 and less than or equal to 1.

In interval notation, this is written as $[0, 1]$.


Therefore, the domain of the function $\cos^{-1} (2x – 1)$ is $[0, 1]$.

Question 25. The domain of the function defined by $f (x) = \sin^{–1} \sqrt{x −1}$ is

(A) [1, 2]

(B) [–1, 1]

(C) [0, 1]

(D) none of these

Answer:

The correct option is (A).


We are asked to find the domain of the function $f (x) = \sin^{–1} \sqrt{x −1}$.


For the function $f(x)$ to be defined, two conditions must be met:

  1. The argument of the square root function must be non-negative.
  2. The argument of the inverse sine function must be within the interval $[-1, 1]$.

Condition 1: Argument of the square root

The expression under the square root is $x-1$. For $\sqrt{x-1}$ to be a real number, we must have:

$x - 1 \geq 0$

Adding 1 to both sides, we get:

$x \geq 1$


Condition 2: Argument of the inverse sine

The domain of $\sin^{-1} u$ is $[-1, 1]$. Thus, the argument of $\sin^{-1}$, which is $\sqrt{x-1}$, must satisfy:

$-1 \leq \sqrt{x-1} \leq 1$

We need to consider the two parts of this inequality separately.

Part (a): $-1 \leq \sqrt{x-1}$

Since the square root of a real number is always non-negative ($\sqrt{x-1} \geq 0$), and $0 \geq -1$, this part of the inequality is always satisfied for any value of $x$ for which $\sqrt{x-1}$ is defined (i.e., $x \geq 1$). This condition does not introduce any new restrictions on $x$ other than $x \geq 1$.

Part (b): $\sqrt{x-1} \leq 1$

To solve this inequality, we can square both sides. Since both $\sqrt{x-1}$ (for $x \geq 1$) and $1$ are non-negative, squaring preserves the inequality direction:

$(\sqrt{x-1})^2 \leq 1^2$

This simplifies to:

$x - 1 \leq 1$

Adding 1 to both sides:

$x \leq 1 + 1$

$x \leq 2$


Combining the conditions

For $f(x)$ to be defined, $x$ must satisfy both $x \geq 1$ and $x \leq 2$.

The intersection of these two conditions is $1 \leq x \leq 2$.


In interval notation, the domain is $[1, 2]$.

Comparing this with the given options, option (A) is $[1, 2]$.

Question 26. If $\cos \left( \sin^{−1} \frac{2}{5} + \cos^{−1} x \right) = 0$, then x is equal to

(A) $\frac{1}{5}$

(B) $\frac{2}{5}$

(C) 0

(D) 1

Answer:

The correct option is (B).


The given equation is:

$\cos \left( \sin^{−1} \frac{2}{5} + \cos^{−1} x \right) = 0$


We know that $\cos \theta = 0$ if and only if $\theta = \frac{\pi}{2} + n\pi$, where $n$ is an integer.

Therefore, the argument of the cosine function must be equal to $\frac{\pi}{2} + n\pi$ for some integer $n$.

$\sin^{−1} \frac{2}{5} + \cos^{−1} x = \frac{\pi}{2} + n\pi$


Let's consider the ranges of the inverse trigonometric functions involved:

  • The range of $\sin^{-1} u$ is $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$. Since $0 < \frac{2}{5} < 1$, $\sin^{-1} \frac{2}{5}$ lies in the interval $\left(0, \frac{\pi}{2}\right)$.
  • The range of $\cos^{-1} x$ is $[0, \pi]$. For the term $\cos^{-1} x$ to be defined, $x$ must be in the interval $[-1, 1]$.

Adding the minimum and maximum values of $\sin^{-1} \frac{2}{5}$ and $\cos^{-1} x$, the sum $\sin^{−1} \frac{2}{5} + \cos^{−1} x$ must lie in the interval $(0 + 0, \frac{\pi}{2} + \pi) = (0, \frac{3\pi}{2})$.

The possible values for $\frac{\pi}{2} + n\pi$ in the interval $(0, \frac{3\pi}{2})$ are $\frac{\pi}{2}$ (when $n=0$) and $\frac{3\pi}{2}$ (when $n=1$).

If $\sin^{−1} \frac{2}{5} + \cos^{−1} x = \frac{3\pi}{2}$, since $\sin^{−1} \frac{2}{5} > 0$, this would require $\cos^{-1} x < \frac{3\pi}{2}$. However, the maximum value of $\cos^{-1} x$ is $\pi$. The maximum value of the sum is $\sin^{-1}(1) + \cos^{-1}(-1) = \frac{\pi}{2} + \pi = \frac{3\pi}{2}$. However, $\sin^{-1} \frac{2}{5} \neq \frac{\pi}{2}$ (as $\frac{2}{5} \neq 1$) and $\cos^{-1} x \neq \pi$ simultaneously for the sum to be exactly $\frac{3\pi}{2}$. Let's re-evaluate the range of the sum more carefully: $\sin^{-1} \frac{2}{5} \in (0, \frac{\pi}{2})$ and $\cos^{-1} x \in [0, \pi]$. The sum is in $(0, \frac{\pi}{2} + \pi] = (0, \frac{3\pi}{2}]$. The values $\frac{\pi}{2} + n\pi$ in $(0, \frac{3\pi}{2}]$ are $\frac{\pi}{2}$ (for $n=0$) and $\frac{3\pi}{2}$ (for $n=1$). If the sum equals $\frac{3\pi}{2}$, then $\sin^{-1} \frac{2}{5} + \cos^{-1} x = \frac{3\pi}{2}$. Since the maximum value of $\sin^{-1} u$ is $\frac{\pi}{2}$ and the maximum value of $\cos^{-1} x$ is $\pi$, the maximum possible value of the sum is $\frac{\pi}{2} + \pi = \frac{3\pi}{2}$. This sum can only be $\frac{3\pi}{2}$ if and only if $\sin^{-1} \frac{2}{5} = \frac{\pi}{2}$ (i.e., $\frac{2}{5}=1$, which is false) and $\cos^{-1} x = \pi$ (i.e., $x=-1$). Since $\sin^{-1} \frac{2}{5} \neq \frac{\pi}{2}$, the sum cannot attain its absolute maximum value $\frac{3\pi}{2}$. Therefore, the only possibility for the sum to be $\frac{\pi}{2} + n\pi$ within the range $(0, \frac{3\pi}{2}]$ is when $n=0$, so the sum must be $\frac{\pi}{2}$.

Thus, we have:

$\sin^{−1} \frac{2}{5} + \cos^{−1} x = \frac{\pi}{2}$


We know the fundamental identity for inverse trigonometric functions:

$\sin^{-1} u + \cos^{-1} u = \frac{\pi}{2}$

(For $|u| \leq 1$)

Comparing our equation with this identity:

$\sin^{-1} \frac{2}{5} + \cos^{-1} x = \frac{\pi}{2}$

and

$\sin^{-1} u + \cos^{-1} u = \frac{\pi}{2}$

By comparing the arguments of the inverse functions, we can see that for the equation to hold, $u$ must be equal to $\frac{2}{5}$ and also equal to $x$.

Therefore, $x = \frac{2}{5}$.


We should verify that this value of $x$ is in the domain of $\cos^{-1} x$. The domain is $[-1, 1]$. Since $\frac{2}{5}$ is in $[-1, 1]$, the solution is valid.

Let's check the original equation with $x = \frac{2}{5}$:

$\cos \left( \sin^{−1} \frac{2}{5} + \cos^{−1} \frac{2}{5} \right)$

Using the identity $\sin^{-1} u + \cos^{-1} u = \frac{\pi}{2}$ with $u = \frac{2}{5}$ (which is in $[-1, 1]$), the expression inside the parenthesis is $\frac{\pi}{2}$.

So, the expression becomes $\cos \left( \frac{\pi}{2} \right)$.

$\cos \left( \frac{\pi}{2} \right) = 0$.

This matches the right-hand side of the given equation, so the solution $x = \frac{2}{5}$ is correct.

Question 27. The value of sin (2 tan–1 (.75)) is equal to

(A) .75

(B) 1.5

(C) .96

(D) sin 1.5

Answer:

The correct option is (C).


We are asked to find the value of $\sin (2 \tan^{–1} (0.75))$.


First, let's convert the decimal $0.75$ into a fraction:

$0.75 = \frac{75}{100} = \frac{3}{4}$

So, the expression becomes $\sin \left( 2 \tan^{–1} \left( \frac{3}{4} \right) \right)$.


We can use the identity for $\sin(2 \tan^{-1} x)$, which is:

$\sin(2 \tan^{-1} x) = \frac{2x}{1+x^2}$

Here, $x = \frac{3}{4}$. Substitute this value into the formula:

$\sin \left( 2 \tan^{–1} \left( \frac{3}{4} \right) \right) = \frac{2 \times \frac{3}{4}}{1 + \left(\frac{3}{4}\right)^2}$


Now, let's simplify the expression:

Numerator: $2 \times \frac{3}{4} = \frac{6}{4} = \frac{3}{2}$

Denominator: $1 + \left(\frac{3}{4}\right)^2 = 1 + \frac{3^2}{4^2} = 1 + \frac{9}{16}$

$1 + \frac{9}{16} = \frac{16}{16} + \frac{9}{16} = \frac{16+9}{16} = \frac{25}{16}$


So, the expression is $\frac{\frac{3}{2}}{\frac{25}{16}}$.

To divide by a fraction, we multiply by its reciprocal:

$\frac{3}{2} \div \frac{25}{16} = \frac{3}{2} \times \frac{16}{25}$

We can cancel out the common factor of 2:

$\frac{3}{\cancel{2}_1} \times \frac{\cancel{16}^8}{25} = \frac{3 \times 8}{1 \times 25} = \frac{24}{25}$


The value of the expression is $\frac{24}{25}$.

Now, let's convert the fraction $\frac{24}{25}$ back to a decimal:

$\frac{24}{25} = \frac{24 \times 4}{25 \times 4} = \frac{96}{100} = 0.96$


Alternate Method: Using a right triangle

Let $\theta = \tan^{-1}(0.75) = \tan^{-1}\left(\frac{3}{4}\right)$. This means $\tan \theta = \frac{3}{4}$.

Since $0.75 > 0$, $\theta$ is in the first quadrant ($0 < \theta < \frac{\pi}{2}$).

Consider a right triangle with angle $\theta$. The tangent is the ratio of the opposite side to the adjacent side. We can take the opposite side to be 3 and the adjacent side to be 4. The hypotenuse is $\sqrt{3^2 + 4^2} = \sqrt{9+16} = \sqrt{25} = 5$.

In this triangle, $\sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{3}{5}$ and $\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{4}{5}$.

The expression we need to evaluate is $\sin(2\theta)$.

Using the double angle formula $\sin(2\theta) = 2 \sin \theta \cos \theta$:

$\sin(2\theta) = 2 \times \left(\frac{3}{5}\right) \times \left(\frac{4}{5}\right) = 2 \times \frac{12}{25} = \frac{24}{25}$

Converting to decimal, $\frac{24}{25} = 0.96$.


Both methods yield the same result, $0.96$.

Comparing this with the given options, the value is $0.96$.

Question 28. The value of $\cos^{-1} \left( \cos \frac{3π}{2} \right)$ is equal to

(A) $\frac{π}{2}$

(B) $\frac{3π}{2}$

(C) $\frac{5π}{2}$

(D) $\frac{7π}{2}$

Answer:

The correct option is (A).


We are asked to find the value of $\cos^{-1} \left( \cos \frac{3π}{2} \right)$.


First, evaluate the inner expression, $\cos \frac{3π}{2}$.

We know that the value of $\cos \frac{3π}{2}$ is $0$.

$\cos \frac{3π}{2} = 0$


Now, the expression becomes $\cos^{-1} (0)$.

The principal value branch of the inverse cosine function, $\cos^{-1} x$, is $[0, \pi]$.

We need to find an angle $\phi$ such that $\cos \phi = 0$ and $\phi$ lies in the interval $[0, \pi]$.

The angle in the interval $[0, \pi]$ whose cosine is $0$ is $\frac{\pi}{2}$.

$\cos^{-1} (0) = \frac{\pi}{2}$

because $\cos \left( \frac{\pi}{2} \right) = 0$ and $\frac{\pi}{2} \in [0, \pi]$.


Therefore, the value of $\cos^{-1} \left( \cos \frac{3π}{2} \right)$ is $\frac{\pi}{2}$.


Alternatively, we can use the property $\cos^{-1}(\cos \theta) = \theta$ if and only if $\theta \in [0, \pi]$.

In this case, $\theta = \frac{3π}{2}$. We check if $\frac{3π}{2}$ is in the interval $[0, \pi]$.

Since $\pi = \frac{2π}{2}$ and $0 \leq \frac{3π}{2}$ is true, but $\frac{3π}{2} \leq \frac{2π}{2}$ is false, $\frac{3π}{2}$ is not in the principal value branch $[0, \pi]$.

We need to find an angle $\phi \in [0, \pi]$ such that $\cos \phi = \cos \frac{3π}{2}$.

We know that $\cos \frac{3π}{2} = 0$. We need to find $\phi \in [0, \pi]$ such that $\cos \phi = 0$. The only angle in $[0, \pi]$ whose cosine is $0$ is $\phi = \frac{\pi}{2}$.

So, $\cos^{-1} \left( \cos \frac{3π}{2} \right) = \cos^{-1}(0) = \frac{\pi}{2}$.

Question 29. The value of the expression $2 \sec^{–1} 2 + \sin^{–1} \left( \frac{1}{2} \right)$ is

(A) $\frac{π}{6}$

(B) $\frac{5π}{6}$

(C) $\frac{7π}{6}$

(D) 1

Answer:

The correct option is (B).


We need to find the value of the expression $2 \sec^{–1} 2 + \sin^{–1} \left( \frac{1}{2} \right)$.


First, let's find the value of $\sec^{–1} 2$.

Let $\alpha = \sec^{–1} 2$. By the definition of the inverse secant function, this means $\sec \alpha = 2$.

The principal value branch of $\sec^{–1} x$ is $[0, \pi] - \left\{ \frac{\pi}{2} \right\}$.

We are looking for an angle $\alpha$ in this interval such that $\sec \alpha = 2$.

Since $\sec \alpha = \frac{1}{\cos \alpha}$, we have $\frac{1}{\cos \alpha} = 2$, which implies $\cos \alpha = \frac{1}{2}$.

We need to find an angle $\alpha \in [0, \pi] - \left\{ \frac{\pi}{2} \right\}$ such that $\cos \alpha = \frac{1}{2}$.

The angle in this interval whose cosine is $\frac{1}{2}$ is $\alpha = \frac{\pi}{3}$.

Note that $\frac{\pi}{3}$ is in the interval $[0, \pi]$ and is not equal to $\frac{\pi}{2}$.

$\sec^{–1} 2 = \frac{\pi}{3}$


Next, let's find the value of $\sin^{–1} \left( \frac{1}{2} \right)$.

Let $\beta = \sin^{–1} \left( \frac{1}{2} \right)$. By the definition of the inverse sine function, this means $\sin \beta = \frac{1}{2}$.

The principal value branch of $\sin^{–1} x$ is $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$.

We are looking for an angle $\beta$ in this interval such that $\sin \beta = \frac{1}{2}$.

The angle in $\left[ -\frac{\pi}{2}, \frac{\pi}{2} \right]$ whose sine is $\frac{1}{2}$ is $\beta = \frac{\pi}{6}$.

$\sin^{–1} \left( \frac{1}{2} \right) = \frac{\pi}{6}$


Now, substitute these values back into the original expression:

$2 \sec^{–1} 2 + \sin^{–1} \left( \frac{1}{2} \right) = 2 \left( \frac{\pi}{3} \right) + \frac{\pi}{6}$

Multiply the first term:

$2 \times \frac{\pi}{3} = \frac{2\pi}{3}$

So the expression becomes:

$\frac{2\pi}{3} + \frac{\pi}{6}$

To add these fractions, find a common denominator, which is 6.

$\frac{2\pi}{3} = \frac{2\pi \times 2}{3 \times 2} = \frac{4\pi}{6}$

Now add the fractions:

$\frac{4\pi}{6} + \frac{\pi}{6} = \frac{4\pi + \pi}{6} = \frac{5\pi}{6}$


The value of the expression is $\frac{5\pi}{6}$.

Comparing this with the given options, the value matches option (B).

Question 30. If $\tan^{–1} x + \tan^{–1} y = \frac{4π}{5}$ , then cot–1 x + cot–1 y equals

(A) $\frac{π}{5}$

(B) $\frac{2π}{5}$

(C) $\frac{3π}{5}$

(D) π

Answer:

The correct option is (A).


The given equation is:

$\tan^{–1} x + \tan^{–1} y = \frac{4π}{5}$


We need to find the value of $\cot^{–1} x + \cot^{–1} y$.


We use the fundamental identity for inverse trigonometric functions:

$\tan^{-1} u + \cot^{-1} u = \frac{\pi}{2}$

(For all $u \in \mathbb{R}$)

From this identity, we can express $\cot^{-1} u$ in terms of $\tan^{-1} u$:

$\cot^{-1} u = \frac{\pi}{2} - \tan^{-1} u$


Now, let's apply this identity to the expression we want to find:

$\cot^{–1} x + \cot^{–1} y = \left( \frac{\pi}{2} - \tan^{–1} x \right) + \left( \frac{\pi}{2} - \tan^{–1} y \right)$

Rearranging the terms:

$\cot^{–1} x + \cot^{–1} y = \frac{\pi}{2} + \frac{\pi}{2} - (\tan^{–1} x + \tan^{–1} y)$

Summing the constant terms:

$\cot^{–1} x + \cot^{–1} y = \pi - (\tan^{–1} x + \tan^{–1} y)$


Now, substitute the given value of $\tan^{–1} x + \tan^{–1} y = \frac{4π}{5}$ into this equation:

$\cot^{–1} x + \cot^{–1} y = \pi - \frac{4π}{5}$

Perform the subtraction:

$\cot^{–1} x + \cot^{–1} y = \frac{5π}{5} - \frac{4π}{5}$

$\cot^{–1} x + \cot^{–1} y = \frac{5π - 4π}{5}$

$\cot^{–1} x + \cot^{–1} y = \frac{π}{5}$


Therefore, the value of $\cot^{–1} x + \cot^{–1} y$ is $\frac{\pi}{5}$.

Question 31. If $\sin^{–1} \left( \frac{2a}{1 + a^2} \right) + \cos^{−1} \left( \frac{1 − a^2}{1 + a^2} \right) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right)$, wℎere $a, x \in [ 0, 1 ]$ then the value of x is

(A) 0

(B) $\frac{a}{2}$

(C) a

(D) $\frac{2a}{1 − a^2}$

Answer:

The correct option is (D).


The given equation is:

$\sin^{–1} \left( \frac{2a}{1 + a^2} \right) + \cos^{−1} \left( \frac{1 − a^2}{1 + a^2} \right) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right)$

We are given that $a \in [0, 1]$ and $x \in [0, 1]$.


We use the following identities for inverse trigonometric functions:

$\sin^{-1} \left( \frac{2\theta}{1 + \theta^2} \right) = 2 \tan^{-1} \theta$

(for $|\theta| \leq 1$)

$\cos^{-1} \left( \frac{1 - \theta^2}{1 + \theta^2} \right) = 2 \tan^{-1} \theta$

(for $\theta \geq 0$)

$\tan^{-1} \left( \frac{2\theta}{1 - \theta^2} \right) = 2 \tan^{-1} \theta$

(for $|\theta| < 1$)


Consider the terms on the Left Hand Side (LHS) of the given equation. Since $a \in [0, 1]$, the conditions for the first two identities with $\theta = a$ are satisfied:

$\sin^{–1} \left( \frac{2a}{1 + a^2} \right) = 2 \tan^{-1} a$

$\cos^{−1} \left( \frac{1 − a^2}{1 + a^2} \right) = 2 \tan^{-1} a$

So, the LHS of the equation becomes:

LHS $= 2 \tan^{-1} a + 2 \tan^{-1} a = 4 \tan^{-1} a$


Consider the term on the Right Hand Side (RHS) of the given equation. Let $\theta = x$. For $x \in [0, 1)$, the identity holds:

$\tan^{-1} \left( \frac{2x}{1 - x^2} \right) = 2 \tan^{-1} x$

Note that for $x=1$, the expression $\frac{2x}{1-x^2}$ is undefined. However, if we assume the equation holds for $x \in [0, 1]$, we can consider the case $x=1$ separately or assume the identity $2 \tan^{-1} x = \tan^{-1} \left( \frac{2x}{1-x^2} \right)$ with appropriate range adjustments or in a limiting sense. Given the multiple choice format and the standard identities provided, the intended simplification is likely using the direct identities where possible.

Substituting the simplified terms back into the original equation, assuming the identities are applicable for the values involved:

$4 \tan^{-1} a = 2 \tan^{-1} x$

Divide both sides by 2:

$2 \tan^{-1} a = \tan^{-1} x$


To find $x$, we take the tangent of both sides:

$\tan(2 \tan^{-1} a) = \tan(\tan^{-1} x)$

Using the identity $\tan(\tan^{-1} u) = u$, the right side is $x$.

Using the identity $\tan(2\theta) = \frac{2 \tan \theta}{1 - \tan^2 \theta}$, with $\theta = \tan^{-1} a$ (so $\tan \theta = a$), the left side is:

$\tan(2 \tan^{-1} a) = \frac{2 \tan(\tan^{-1} a)}{1 - \tan^2(\tan^{-1} a)} = \frac{2a}{1 - a^2}$


Equating the left and right sides, we get:

$x = \frac{2a}{1 - a^2}$


We must check if this value of $x$ is within the given range $[0, 1]$ when $a \in [0, 1]$. The expression $\frac{2a}{1-a^2}$ is in $[0, 1]$ only when $a \in [0, \sqrt{2}-1]$. If $a > \sqrt{2}-1$, then $\frac{2a}{1-a^2} > 1$. If $a=1$, the expression is undefined. This suggests the equality holds only for a specific range of $a$ within $[0, 1]$. However, the question asks for "the value of x", implying a determined value or expression. Based on the structure and options, the intended relation derived from the direct identity substitutions is $x = \frac{2a}{1 - a^2}$.


Let's verify the result using the principal value ranges. LHS $= 4 \tan^{-1} a$. Since $a \in [0, 1]$, $\tan^{-1} a \in [0, \pi/4]$. So LHS $\in [0, \pi]$. RHS $= \tan^{-1} \left( \frac{2x}{1 - x^2} \right)$. Let $x = \tan \phi$, $\phi \in [0, \pi/4]$. RHS $= \tan^{-1}(\tan 2\phi)$. Since $2\phi \in [0, \pi/2]$, RHS $\in [0, \pi/2]$. For the equality to hold, both sides must be in $[0, \pi/2]$. This requires $4 \tan^{-1} a \in [0, \pi/2]$, which means $\tan^{-1} a \in [0, \pi/8]$, so $a \in [0, \tan(\pi/8)]$. If $a \in [0, \tan(\pi/8)]$, then the equation $4 \tan^{-1} a = \tan^{-1} \left( \frac{2x}{1 - x^2} \right)$ holds with the value in $[0, \pi/2]$. Taking tan of both sides gives $\tan(4 \tan^{-1} a) = \frac{2x}{1 - x^2}$. Let $\alpha = \tan^{-1} a$, so $\alpha \in [0, \pi/8]$. $4\alpha \in [0, \pi/2]$. $\tan(4\alpha) = \frac{2 \tan(2\alpha)}{1 - \tan^2(2\alpha)}$. $\tan(2\alpha) = \frac{2 \tan \alpha}{1 - \tan^2 \alpha} = \frac{2a}{1-a^2}$. Since $\alpha \in [0, \pi/8]$, $2\alpha \in [0, \pi/4]$, so $\frac{2a}{1-a^2} \in [0, 1]$. Let $y = \frac{2a}{1-a^2}$. $\tan(4\alpha) = \frac{2y}{1-y^2}$. So we have $\frac{2y}{1-y^2} = \frac{2x}{1-x^2}$, where $y = \frac{2a}{1-a^2}$. This implies $x=y$ or some other relationship depending on the domain. Since $a \in [0, \tan(\pi/8)]$, $y = \frac{2a}{1-a^2} \in [0, 1]$. Since $x \in [0, 1]$ and $y \in [0, 1]$, the function $f(z) = \frac{2z}{1-z^2}$ is strictly increasing on $[0, 1)$. If $f(x) = f(y)$ and $x, y \in [0, 1)$, then $x=y$. At $x=1$, $f(x)$ is undefined. At $y=1$ (when $a=\tan(\pi/8)$), $f(y)$ is undefined. When $a=\tan(\pi/8)$, $y=1$. LHS = $\pi/2$. RHS = $\tan^{-1}(\frac{2x}{1-x^2}) = \pi/2$, which implies $x=1$. So $x=y=1$. Thus, for $a \in [0, \tan(\pi/8)]$, $x = \frac{2a}{1-a^2}$. The question seems to expect the result from the direct formula substitution, which is indeed option (D).

Question 32. The value of $\cot \left[ \cos^{−1} \left( \frac{7}{25} \right) \right]$ is

(A) $\frac{25}{24}$

(B) $\frac{25}{7}$

(C) $\frac{24}{25}$

(D) $\frac{7}{24}$

Answer:

The correct option is (D).


We want to find the value of $\cot \left[ \cos^{−1} \left( \frac{7}{25} \right) \right]$.


Let $\theta = \cos^{−1} \left( \frac{7}{25} \right)$.

By the definition of the inverse cosine function, $\cos \theta = \frac{7}{25}$.

The principal value branch of $\cos^{-1} u$ is $[0, \pi]$. Since $\frac{7}{25}$ is positive ($0 < \frac{7}{25} < 1$), the angle $\theta$ lies in the first quadrant, i.e., $0 < \theta < \frac{\pi}{2}$.


We need to find the value of $\cot \theta$.

We can use the identity $\cot \theta = \frac{\cos \theta}{\sin \theta}$.

We already have $\cos \theta = \frac{7}{25}$. We need to find $\sin \theta$.

Since $\theta$ is in the first quadrant, $\sin \theta$ is positive.

Using the Pythagorean identity $\sin^2 \theta + \cos^2 \theta = 1$, we can find $\sin \theta$:

$\sin^2 \theta = 1 - \cos^2 \theta$

$\sin^2 \theta = 1 - \left( \frac{7}{25} \right)^2$

$\sin^2 \theta = 1 - \frac{49}{625}$

To subtract, find a common denominator:

$\sin^2 \theta = \frac{625}{625} - \frac{49}{625}$

$\sin^2 \theta = \frac{625 - 49}{625}$

$\sin^2 \theta = \frac{576}{625}$

Take the square root of both sides. Since $\theta$ is in the first quadrant, $\sin \theta > 0$:

$\sin \theta = \sqrt{\frac{576}{625}}$

$\sin \theta = \frac{24}{25}$


Now, calculate $\cot \theta$:

$\cot \theta = \frac{\cos \theta}{\sin \theta}$

$\cot \theta = \frac{\frac{7}{25}}{\frac{24}{25}}$

$\cot \theta = \frac{7}{25} \times \frac{25}{24}$

Cancel out the common factor of 25:

$\cot \theta = \frac{7}{\cancel{25}} \times \frac{\cancel{25}}{24}$

$\cot \theta = \frac{7}{24}$


Thus, the value of $\cot \left[ \cos^{−1} \left( \frac{7}{25} \right) \right]$ is $\frac{7}{24}$.


Alternate Method: Using a right triangle

Let $\theta = \cos^{−1} \left( \frac{7}{25} \right)$. Then $\cos \theta = \frac{7}{25}$.

Since $\cos \theta$ is positive and the principal value branch of $\cos^{-1}$ is $[0, \pi]$, $\theta$ must be in the first quadrant ($0 < \theta < \frac{\pi}{2}$).

Consider a right-angled triangle with angle $\theta$. Since $\cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$, we can label the adjacent side as 7 and the hypotenuse as 25.

Using the Pythagorean theorem, let the opposite side be $y$:

$\text{Opposite}^2 + \text{Adjacent}^2 = \text{Hypotenuse}^2$

$y^2 + 7^2 = 25^2$

$y^2 + 49 = 625$

$y^2 = 625 - 49$

$y^2 = 576$

Since $y$ represents a side length, it must be positive:

$y = \sqrt{576} = 24$

Now we can find $\cot \theta$. The cotangent is the ratio of the adjacent side to the opposite side:

$\cot \theta = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{7}{24}$

So, $\cot \left[ \cos^{−1} \left( \frac{7}{25} \right) \right] = \frac{7}{24}$.

Question 33. The value of the expression $\tan \left( \frac{1}{2} \cos^{−1} \frac{2}{\sqrt{5}} \right)$ is

(A) $2 + \sqrt{5}$

(B) $\sqrt{5} - 2$

(C) $\frac{\sqrt{5} + 2}{2}$

(D) $5 + \sqrt{2}$

[Hint: $\tan \frac{θ}{2} = \sqrt{\frac{1 − \cos θ}{1 + \cos θ}}$ ].

Answer:

The correct option is (B).


We are asked to find the value of the expression $\tan \left( \frac{1}{2} \cos^{−1} \frac{2}{\sqrt{5}} \right)$.


Let $\theta = \cos^{−1} \frac{2}{\sqrt{5}}$. By the definition of the inverse cosine function, we have $\cos \theta = \frac{2}{\sqrt{5}}$.

Since $0 < \frac{2}{\sqrt{5}} < 1$, the principal value of $\theta = \cos^{-1} \frac{2}{\sqrt{5}}$ lies in the first quadrant, i.e., $0 < \theta < \frac{\pi}{2}$.

Then, $\frac{\theta}{2}$ lies in the interval $0 < \frac{\theta}{2} < \frac{\pi}{4}$.


The expression we need to evaluate is $\tan \left( \frac{\theta}{2} \right)$.

We can use the half-angle identity for tangent:

$\tan \frac{\theta}{2} = \sqrt{\frac{1 − \cos θ}{1 + \cos θ}}$

This formula gives the positive square root, which is appropriate since $\frac{\theta}{2}$ is in the first quadrant and $\tan \frac{\theta}{2} > 0$.


Substitute the value $\cos \theta = \frac{2}{\sqrt{5}}$ into the formula:

$\tan \frac{\theta}{2} = \sqrt{\frac{1 − \frac{2}{\sqrt{5}}}{1 + \frac{2}{\sqrt{5}}}}$

Now, simplify the expression inside the square root. Find a common denominator for the numerator and the denominator:

$\tan \frac{\theta}{2} = \sqrt{\frac{\frac{\sqrt{5}}{\sqrt{5}} − \frac{2}{\sqrt{5}}}{\frac{\sqrt{5}}{\sqrt{5}} + \frac{2}{\sqrt{5}}}}$

$\tan \frac{\theta}{2} = \sqrt{\frac{\frac{\sqrt{5} − 2}{\sqrt{5}}}{\frac{\sqrt{5} + 2}{\sqrt{5}}}}$

Multiply the numerator by the reciprocal of the denominator:

$\tan \frac{\theta}{2} = \sqrt{\frac{\sqrt{5} − 2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5} + 2}}$

$\tan \frac{\theta}{2} = \sqrt{\frac{\sqrt{5} − 2}{\sqrt{5} + 2}}$

To simplify the expression under the square root, multiply the numerator and denominator by the conjugate of the denominator, $\sqrt{5} - 2$:

$\tan \frac{\theta}{2} = \sqrt{\frac{\sqrt{5} − 2}{\sqrt{5} + 2} \times \frac{\sqrt{5} − 2}{\sqrt{5} − 2}}$

$\tan \frac{\theta}{2} = \sqrt{\frac{(\sqrt{5} − 2)^2}{(\sqrt{5})^2 − 2^2}}$

$\tan \frac{\theta}{2} = \sqrt{\frac{(\sqrt{5} − 2)^2}{5 − 4}}$

$\tan \frac{\theta}{2} = \sqrt{\frac{(\sqrt{5} − 2)^2}{1}}$

$\tan \frac{\theta}{2} = \sqrt{(\sqrt{5} − 2)^2}$

$\tan \frac{\theta}{2} = |\sqrt{5} − 2|$

Since $\sqrt{5} \approx 2.236$, we have $\sqrt{5} - 2 > 0$. So $|\sqrt{5} - 2| = \sqrt{5} - 2$.

$\tan \frac{\theta}{2} = \sqrt{5} − 2$


Thus, the value of the expression $\tan \left( \frac{1}{2} \cos^{−1} \frac{2}{\sqrt{5}} \right)$ is $\sqrt{5} − 2$.


Alternate Method:

Let $y = \tan \left( \frac{1}{2} \cos^{−1} \frac{2}{\sqrt{5}} \right)$.

Then $\frac{1}{2} \cos^{−1} \frac{2}{\sqrt{5}} = \tan^{−1} y$.

So, $\cos^{−1} \frac{2}{\sqrt{5}} = 2 \tan^{−1} y$.

Taking the cosine of both sides:

$\cos \left( \cos^{−1} \frac{2}{\sqrt{5}} \right) = \cos \left( 2 \tan^{−1} y \right)$

$\frac{2}{\sqrt{5}} = \cos \left( 2 \tan^{−1} y \right)$

Using the identity $\cos(2 \tan^{-1} y) = \frac{1 - y^2}{1 + y^2}$, we have:

$\frac{2}{\sqrt{5}} = \frac{1 - y^2}{1 + y^2}$

Cross-multiply:

$2(1 + y^2) = \sqrt{5}(1 - y^2)$

$2 + 2y^2 = \sqrt{5} - \sqrt{5}y^2$

$2y^2 + \sqrt{5}y^2 = \sqrt{5} - 2$

$y^2(2 + \sqrt{5}) = \sqrt{5} - 2$

$y^2 = \frac{\sqrt{5} - 2}{\sqrt{5} + 2}$

From the previous method, we found that $\frac{\sqrt{5} - 2}{\sqrt{5} + 2} = (\sqrt{5} - 2)^2$.

$y^2 = (\sqrt{5} - 2)^2$

Taking the square root:

$y = \pm \sqrt{(\sqrt{5} - 2)^2} = \pm |\sqrt{5} - 2|$

As established earlier, if $\theta = \cos^{-1} \frac{2}{\sqrt{5}}$, then $0 < \frac{\theta}{2} < \frac{\pi}{4}$. The tangent of an angle in this interval is positive. So, $y = \tan \frac{\theta}{2} > 0$.

Since $\sqrt{5} - 2 > 0$, we take the positive value:

$y = \sqrt{5} - 2$

Both methods give the same result.

Question 34. If | x | ≤ 1, then $2 \tan^{–1} x + \sin^{–1} \left( \frac{2x}{1 + x^2} \right)$ is equal to

(A) 4 tan–1 x

(B) 0

(C) $\frac{π}{2}$

(D) π

Answer:

The correct option is (A).


We are asked to find the value of the expression $2 \tan^{–1} x + \sin^{–1} \left( \frac{2x}{1 + x^2} \right)$ given that $|x| \leq 1$.


We use the standard identity for the inverse sine function:

$\sin^{-1} \left( \frac{2u}{1 + u^2} \right) = 2 \tan^{-1} u$

(This identity holds for $|u| \leq 1$)


In the given expression, the argument of the inverse sine function is $\frac{2x}{1 + x^2}$. Since we are given that $|x| \leq 1$, the condition for the identity holds true with $u = x$.

Therefore, we can write:

$\sin^{–1} \left( \frac{2x}{1 + x^2} \right) = 2 \tan^{–1} x$


Now, substitute this into the original expression:

$2 \tan^{–1} x + \sin^{–1} \left( \frac{2x}{1 + x^2} \right) = 2 \tan^{–1} x + (2 \tan^{–1} x)$

Combine the terms:

$2 \tan^{–1} x + 2 \tan^{–1} x = 4 \tan^{–1} x$


Thus, the value of the expression is $4 \tan^{–1} x$ when $|x| \leq 1$.

Comparing this with the given options, the value matches option (A).

Question 35. If cos–1 $α$ + cos–1 $β$ + cos–1 $γ$ = 3π, then $α (β + γ) + β (γ + α) + γ (α + β)$ equals

(A) 0

(B) 1

(C) 6

(D) 12

Answer:

The correct option is (C).


Given:

$\cos^{-1} \alpha + \cos^{-1} \beta + \cos^{-1} \gamma = 3\pi$

To Find:

The value of $\alpha (\beta + \gamma) + \beta (\gamma + \alpha) + \gamma (\alpha + \beta)$.


Solution:

The domain of the inverse cosine function, $\cos^{-1} x$, is $[-1, 1]$.

The principal value range of $\cos^{-1} x$ is $[0, \pi]$.

This means that for any value $x$ in the domain $[-1, 1]$, the value of $\cos^{-1} x$ is between $0$ and $\pi$, inclusive.

So, $0 \leq \cos^{-1} \alpha \leq \pi$, $0 \leq \cos^{-1} \beta \leq \pi$, and $0 \leq \cos^{-1} \gamma \leq \pi$.

The maximum possible value of the sum $\cos^{-1} \alpha + \cos^{-1} \beta + \cos^{-1} \gamma$ is the sum of their maximum individual values:

Maximum sum $= \pi + \pi + \pi = 3\pi$

The given equation states that the sum is equal to this maximum value:

$\cos^{-1} \alpha + \cos^{-1} \beta + \cos^{-1} \gamma = 3\pi$

This equality can only hold if each term in the sum achieves its maximum possible value simultaneously.

Therefore, we must have:

$\cos^{-1} \alpha = \pi$

$\cos^{-1} \beta = \pi$

$\cos^{-1} \gamma = \pi$

From the definition of the inverse cosine function, $\cos^{-1} x = \theta$ implies $\cos \theta = x$.

Applying this to our equations:

$\alpha = \cos(\pi)$

$\alpha = -1$

Similarly,

$\beta = \cos(\pi) = -1$

$\gamma = \cos(\pi) = -1$


Now, we need to evaluate the expression $\alpha (\beta + \gamma) + \beta (\gamma + \alpha) + \gamma (\alpha + \beta)$ using the values $\alpha = -1$, $\beta = -1$, and $\gamma = -1$.

Substitute the values into the expression:

Value $= (-1)((-1) + (-1)) + (-1)((-1) + (-1)) + (-1)((-1) + (-1))$

Value $= (-1)(-2) + (-1)(-2) + (-1)(-2)$

Value $= 2 + 2 + 2$

Value $= 6$


The value of the expression $\alpha (\beta + \gamma) + \beta (\gamma + \alpha) + \gamma (\alpha + \beta)$ is $6$.

Question 36. The number of real solutions of the equation $\sqrt{1 + \cos 2x} = \sqrt{2} \cos^{−1} (\cos x)$ in $\left[ \frac{π}{2},π \right]$ is

(A) 0

(B) 1

(C) 2

(D) Infinite

Answer:

The correct option is (A).


Given:

The equation $\sqrt{1 + \cos 2x} = \sqrt{2} \cos^{−1} (\cos x)$ in the interval $\left[ \frac{π}{2},π \right]$.

To Find:

The number of real solutions of the equation in the given interval.


Solution:

Let's simplify both sides of the given equation.

Consider the left side: $\sqrt{1 + \cos 2x}$.

We use the double angle identity for cosine: $\cos 2x = 2\cos^2 x - 1$.

Substituting this into the expression, we get:

$1 + \cos 2x = 1 + (2\cos^2 x - 1) = 2\cos^2 x$

So, $\sqrt{1 + \cos 2x} = \sqrt{2\cos^2 x} = \sqrt{2} \sqrt{\cos^2 x} = \sqrt{2} |\cos x|$.

$\sqrt{1 + \cos 2x} = \sqrt{2} |\cos x|$

... (i)


Consider the right side of the equation: $\sqrt{2} \cos^{−1} (\cos x)$.

We use the property of the inverse cosine function: $\cos^{-1} (\cos \theta) = \theta$ if $\theta \in [0, \pi]$.

The given interval for $x$ is $\left[ \frac{π}{2},π \right]$. This interval is a subset of $[0, \pi]$.

So, for any $x$ in the interval $\left[ \frac{π}{2},π \right]$, the property $\cos^{-1} (\cos x) = x$ is valid.

$\cos^{−1} (\cos x) = x$

(For $x \in [0, \pi]$)

Substituting this into the right side of the equation, we get $\sqrt{2} x$.


Now, substitute the simplified left side (from equation (i)) and the simplified right side back into the original equation:

$\sqrt{2} |\cos x| = \sqrt{2} x$

Since $\sqrt{2} \neq 0$, we can divide both sides by $\sqrt{2}$:

$|\cos x| = x$

... (ii)


We need to find the number of solutions for the equation $|\cos x| = x$ in the interval $\left[ \frac{π}{2},π \right]$.

For $x$ in the interval $\left[ \frac{π}{2},π \right]$:

  • $x \geq \frac{\pi}{2} \approx 1.57$, so $x$ is positive.
  • The value of $\cos x$ is non-positive ($\cos(\pi/2) = 0$ and $\cos x < 0$ for $x \in (\pi/2, \pi]$).

Since $\cos x \leq 0$ for $x \in \left[ \frac{π}{2},π \right]$, the absolute value $|\cos x|$ is equal to $-\cos x$.


Substitute $|\cos x| = -\cos x$ into equation (ii):

$-\cos x = x$

Rearranging this equation, we get:

$\cos x + x = 0$

... (iii)


We need to find the number of real solutions to the equation $\cos x + x = 0$ in the interval $\left[ \frac{π}{2},π \right]$.

Let's define a function $f(x) = \cos x + x$. We are looking for the number of roots of $f(x)$ in the interval $\left[ \frac{π}{2},π \right]$.

Evaluate the function at the endpoints of the interval:

$f\left(\frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2}\right) + \frac{\pi}{2} = 0 + \frac{\pi}{2} = \frac{\pi}{2}$

$f(\pi) = \cos(\pi) + \pi = -1 + \pi$

Since $\pi \approx 3.14$, $\frac{\pi}{2} \approx 1.57$. Both $f(\frac{\pi}{2}) = \frac{\pi}{2}$ and $f(\pi) = \pi - 1$ are positive values.


To understand the behavior of $f(x)$ in the interval, let's find its derivative:

$f'(x) = \frac{d}{dx}(\cos x + x) = -\sin x + 1$

For $x$ in the interval $\left[ \frac{π}{2},π \right]$, the value of $\sin x$ is in the range $(0, 1]$.

  • At $x = \frac{\pi}{2}$, $\sin(\frac{\pi}{2}) = 1$, so $f'(\frac{\pi}{2}) = 1 - 1 = 0$.
  • For $x \in (\frac{\pi}{2}, \pi]$, $\sin x \in (0, 1)$, so $f'(x) = 1 - \sin x \in [0, 1)$.

Since $f'(x) \geq 0$ for all $x \in \left[ \frac{π}{2},π \right]$, the function $f(x)$ is non-decreasing in this interval.


We have $f(\frac{\pi}{2}) = \frac{\pi}{2}$, which is positive. Since $f(x)$ is non-decreasing on $\left[ \frac{π}{2},π \right]$, for any $x > \frac{\pi}{2}$ in the interval, $f(x) \geq f(\frac{\pi}{2})$.

$f(x) \geq \frac{\pi}{2}$

(For all $x \in \left[ \frac{π}{2},π \right]$)

Since $\frac{\pi}{2} > 0$, we have $f(x) > 0$ for all $x \in \left[ \frac{π}{2},π \right]$.

This means the equation $f(x) = \cos x + x = 0$ has no solution in the interval $\left[ \frac{π}{2},π \right]$.


Therefore, the original equation $\sqrt{1 + \cos 2x} = \sqrt{2} \cos^{−1} (\cos x)$ has no real solutions in the interval $\left[ \frac{π}{2},π \right]$.

The number of real solutions is 0.

Question 37. If cos–1 x > sin–1 x, then

(A) $\frac{1}{\sqrt{2}} < x ≤ 1$

(B) $0 ≤ x < \frac{1}{\sqrt{2}}$

(C) $−1 ≤ x < \frac{1}{\sqrt{2}}$

(D) x > 0

Answer:

The correct option is (C).


Given:

The inequality $\cos^{–1} x > \sin^{–1} x$.

To Find:

The range of values of $x$ for which the inequality holds.


Solution:

For the functions $\cos^{-1} x$ and $\sin^{-1} x$ to be defined, $x$ must be in the domain $[-1, 1]$. Thus, the inequality $\cos^{–1} x > \sin^{–1} x$ is meaningful only for $x \in [-1, 1]$.

We use the fundamental identity relating inverse sine and inverse cosine functions:

$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$

(For all $x \in [-1, 1]$)

From this identity, we can express $\cos^{-1} x$ as:

$\cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x$

Now, substitute this into the given inequality:

$\left( \frac{\pi}{2} - \sin^{-1} x \right) > \sin^{-1} x$

Add $\sin^{-1} x$ to both sides of the inequality:

$\frac{\pi}{2} > \sin^{-1} x + \sin^{-1} x$

$\frac{\pi}{2} > 2 \sin^{-1} x$

Divide both sides by 2:

$\frac{\pi}{4} > \sin^{-1} x$

This can be written as:

$\sin^{-1} x < \frac{\pi}{4}$

... (i)


The function $\sin^{-1} u$ is an increasing function on its domain $[-1, 1]$. This means that if $\sin^{-1} x_1 < \sin^{-1} x_2$, then $x_1 < x_2$.

To solve inequality (i) for $x$, we can apply the sine function to both sides. Since $\sin u$ is an increasing function on the range of $\sin^{-1} x$, which is $[-\pi/2, \pi/2]$, and $\frac{\pi}{4}$ is within this range, applying sine preserves the inequality direction:

$\sin(\sin^{-1} x) < \sin\left(\frac{\pi}{4}\right)$

Using the property $\sin(\sin^{-1} x) = x$, we get:

$x < \sin\left(\frac{\pi}{4}\right)$

We know that $\sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$.

$x < \frac{1}{\sqrt{2}}$


Now, we must combine this condition with the domain requirement for the original inequality, which is $x \in [-1, 1]$.

So, $x$ must satisfy both $x < \frac{1}{\sqrt{2}}$ and $-1 \leq x \leq 1$.

The intersection of these two conditions is $-1 \leq x < \frac{1}{\sqrt{2}}$.


In interval notation, the solution is $\left[ -1, \frac{1}{\sqrt{2}} \right)$.

Comparing this result with the given options:

  • (A) $\frac{1}{\sqrt{2}} < x ≤ 1$: This is the opposite inequality.
  • (B) $0 ≤ x < \frac{1}{\sqrt{2}}$: This only includes the non-negative part of our solution.
  • (C) $−1 ≤ x < \frac{1}{\sqrt{2}}$: This matches our solution.
  • (D) x > 0: This includes values where $\cos^{-1} x \leq \sin^{-1} x$ (specifically, $x \geq \frac{1}{\sqrt{2}}$) and excludes negative values where the inequality holds.

Therefore, the inequality $\cos^{–1} x > \sin^{–1} x$ holds for $-1 \leq x < \frac{1}{\sqrt{2}}$.

Question 38 to 48 (Fill in the Blanks)

Fill in the blanks in each of the Exercises 38 to 48.

Question 38. The principal value of $\cos^{–1} \left( −\frac{1}{2} \right)$ is _________.

Answer:

To find the principal value of $\cos^{-1} \left( -\frac{1}{2} \right)$, we need to find an angle $\theta$ in the principal value branch of $\cos^{-1}(x)$ such that $\cos(\theta) = -\frac{1}{2}$.


The principal value branch of $\cos^{-1}(x)$ is $[0, \pi]$.


We know that $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$.


Using the property $\cos(\pi - x) = -\cos(x)$, we can find the angle $\theta$ such that $\cos(\theta) = -\frac{1}{2}$.

Let $x = \frac{\pi}{3}$. Then,

$\cos\left(\pi - \frac{\pi}{3}\right) = -\cos\left(\frac{\pi}{3}\right)$

$\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$


We need to check if $\theta = \frac{2\pi}{3}$ is in the principal value branch $[0, \pi]$.

Since $0 \leq \frac{2\pi}{3} \leq \pi$, the value $\frac{2\pi}{3}$ lies in the principal value branch of $\cos^{-1}(x)$.


Therefore, the principal value of $\cos^{-1} \left( -\frac{1}{2} \right)$ is $\frac{2\pi}{3}$.


The principal value of $\cos^{–1} \left( −\frac{1}{2} \right)$ is $\frac{2\pi}{3}$.

Question 39. The value of $\sin^{–1} \left( \sin \frac{3π}{5} \right)$ is _________.

Answer:

To find the value of $\sin^{–1} \left( \sin \frac{3π}{5} \right)$, we need to determine if the angle $\frac{3π}{5}$ lies within the principal value branch of $\sin^{-1}(x)$.


The principal value branch of $\sin^{-1}(x)$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.


The angle given is $\frac{3π}{5}$. Let's convert this to degrees: $\frac{3\pi}{5} = \frac{3 \times 180^\circ}{5} = 108^\circ$.

The principal value branch in degrees is $[-90^\circ, 90^\circ]$.


Since $108^\circ$ is not in the interval $[-90^\circ, 90^\circ]$, $\sin^{–1} \left( \sin \frac{3π}{5} \right) \neq \frac{3π}{5}$.


We need to find an angle $\theta$ in the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $\sin(\theta) = \sin \left(\frac{3π}{5}\right)$.

Using the trigonometric identity $\sin(\pi - x) = \sin(x)$, we have:

$\sin\left(\frac{3π}{5}\right) = \sin\left(\pi - \frac{3π}{5}\right)$

$\sin\left(\frac{3π}{5}\right) = \sin\left(\frac{5π - 3π}{5}\right)$

$\sin\left(\frac{3π}{5}\right) = \sin\left(\frac{2π}{5}\right)$


Now we check if the angle $\frac{2π}{5}$ is in the principal value branch $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Converting $\frac{2π}{5}$ to degrees: $\frac{2π}{5} = \frac{2 \times 180^\circ}{5} = 72^\circ$.

Since $-90^\circ \leq 72^\circ \leq 90^\circ$, the angle $\frac{2π}{5}$ is in the principal value branch.


Therefore, the value of $\sin^{–1} \left( \sin \frac{3π}{5} \right)$ is equal to $\frac{2π}{5}$.


The value of $\sin^{–1} \left( \sin \frac{3π}{5} \right)$ is $\frac{2π}{5}$.

Question 40. If $\cos (\tan^{–1} x + \cot^{–1} \sqrt{3} ) = 0$, then value of x is__________.

Answer:

Given the equation: $\cos (\tan^{–1} x + \cot^{–1} \sqrt{3} ) = 0$.


We know that $\cos(\theta) = 0$ when $\theta = (2n+1)\frac{\pi}{2}$ for any integer $n$. For the principal values of the inverse trigonometric functions, the argument of the cosine function is typically within a range where its principal value is $\frac{\pi}{2}$.


So, we can write:

$\tan^{–1} x + \cot^{–1} \sqrt{3} = \frac{\pi}{2}$


Next, we need to find the principal value of $\cot^{–1} \sqrt{3}$. We look for an angle $\alpha$ in the principal value branch $(0, \pi)$ such that $\cot(\alpha) = \sqrt{3}$.

We know that $\cot\left(\frac{\pi}{6}\right) = \sqrt{3}$.

Since $\frac{\pi}{6} \in (0, \pi)$, the principal value of $\cot^{–1} \sqrt{3}$ is $\frac{\pi}{6}$.


Substitute this value back into the equation:

$\tan^{–1} x + \frac{\pi}{6} = \frac{\pi}{2}$


Now, we solve for $\tan^{–1} x$:

$\tan^{–1} x = \frac{\pi}{2} - \frac{\pi}{6}$

$\tan^{–1} x = \frac{3\pi}{6} - \frac{\pi}{6}$

$\tan^{–1} x = \frac{2\pi}{6}$

$\tan^{–1} x = \frac{\pi}{3}$


To find x, we take the tangent of both sides:

$x = \tan\left(\frac{\pi}{3}\right)$

We know that $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$.


Therefore, the value of x is $\sqrt{3}$.


The value of x is $\sqrt{3}$.

Question 41. The set of values of $\sec^{–1} \left( \frac{1}{2} \right)$ is ________.

Answer:

To find the set of values of $\sec^{–1} \left( \frac{1}{2} \right)$, we first need to consider the domain of the inverse secant function, $\sec^{-1}(x)$.


The domain of $\sec^{-1}(x)$ is the set of all real numbers x such that $|x| \geq 1$. This means $x \in (-\infty, -1] \cup [1, \infty)$.


The value inside the inverse secant function is $\frac{1}{2}$.


We check if $\frac{1}{2}$ is within the domain of $\sec^{-1}(x)$.

We have $|\frac{1}{2}| = \frac{1}{2}$.

Since $\frac{1}{2} < 1$, the value $\frac{1}{2}$ is not in the domain $(-\infty, -1] \cup [1, \infty)$.


Therefore, $\sec^{–1} \left( \frac{1}{2} \right)$ is undefined.


The set of values for which $\sec^{–1} \left( \frac{1}{2} \right)$ exists is an empty set.


The set of values of $\sec^{–1} \left( \frac{1}{2} \right)$ is $\phi$ (empty set).

Question 42. The principal value of $tan^{–1} \sqrt{3}$ is__________.

Answer:

To find the principal value of $\tan^{–1} \sqrt{3}$, we need to find an angle $\theta$ in the principal value branch of $\tan^{-1}(x)$ such that $\tan(\theta) = \sqrt{3}$.


The principal value branch of $\tan^{-1}(x)$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$.


We know that $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$.


We need to check if the angle $\frac{\pi}{3}$ is in the principal value branch $(-\frac{\pi}{2}, \frac{\pi}{2})$.

Since $-\frac{\pi}{2} < \frac{\pi}{3} < \frac{\pi}{2}$, the value $\frac{\pi}{3}$ lies in the principal value branch of $\tan^{-1}(x)$.


Therefore, the principal value of $\tan^{–1} \sqrt{3}$ is $\frac{\pi}{3}$.


The principal value of $\tan^{–1} \sqrt{3}$ is $\frac{\pi}{3}$.

Question 43. The value of $\cos^{–1} \left( \cos \frac{14π}{3} \right)$ is _________.

Answer:

To find the value of $\cos^{–1} \left( \cos \frac{14π}{3} \right)$, we need to determine if the angle $\frac{14π}{3}$ lies within the principal value branch of $\cos^{-1}(x)$.


The principal value branch of $\cos^{-1}(x)$ is $[0, \pi]$.


The angle given is $\frac{14π}{3}$. Let's rewrite this angle in the form $2n\pi + \theta$ or similar, such that the argument of cosine is simplified.

$\frac{14\pi}{3} = \frac{12\pi + 2\pi}{3} = \frac{12\pi}{3} + \frac{2\pi}{3} = 4\pi + \frac{2\pi}{3}$


Using the property that $\cos(2n\pi + \theta) = \cos(\theta)$ for any integer $n$, we can simplify the expression:

$\cos\left(\frac{14π}{3}\right) = \cos\left(4\pi + \frac{2π}{3}\right) = \cos\left(\frac{2π}{3}\right)$


Now, the original expression becomes $\cos^{–1} \left( \cos \frac{2π}{3} \right)$.


We need to check if the angle $\frac{2π}{3}$ is in the principal value branch $[0, \pi]$.

We have $0 \leq \frac{2\pi}{3} \leq \pi$. This is true because $0 \leq \frac{2}{3} \leq 1$.

Since the angle $\frac{2π}{3}$ is in the principal value branch of $\cos^{-1}(x)$, we can use the property $\cos^{-1}(\cos \theta) = \theta$ when $\theta \in [0, \pi]$.


Therefore, $\cos^{–1} \left( \cos \frac{2π}{3} \right) = \frac{2π}{3}$.


Thus, the value of $\cos^{–1} \left( \cos \frac{14π}{3} \right)$ is $\frac{2π}{3}$.


The value of $\cos^{–1} \left( \cos \frac{14π}{3} \right)$ is $\frac{2π}{3}$.

Question 44. The value of cos (sin–1 x + cos–1 x), |x| ≤ 1 is______ .

Answer:

We are asked to find the value of the expression $\cos (\sin^{–1} x + \cos^{–1} x)$ for $|x| \leq 1$.


We know the fundamental identity relating the inverse sine and inverse cosine functions:

$\sin^{–1} x + \cos^{–1} x = \frac{\pi}{2}$

(for $x \in [-1, 1]$)


The given condition is $|x| \leq 1$, which is equivalent to $-1 \leq x \leq 1$. This range is the common domain for both $\sin^{-1} x$ and $\cos^{-1} x$.


Since the condition $|x| \leq 1$ is satisfied, we can apply the identity $\sin^{–1} x + \cos^{–1} x = \frac{\pi}{2}$ directly.


Substitute this value into the given expression:

$\cos (\sin^{–1} x + \cos^{–1} x) = \cos\left(\frac{\pi}{2}\right)$


We know that the value of $\cos\left(\frac{\pi}{2}\right)$ is 0.


Therefore, the value of $\cos (\sin^{–1} x + \cos^{–1} x)$ for $|x| \leq 1$ is 0.


The value of cos (sin–1 x + cos–1 x), |x| ≤ 1 is 0.

Question 45. The value of expression $\tan \left( \frac{\sin^{−1} x + \cos^{−1} x}{2} \right)$ , when $x = \frac{\sqrt{3}}{2}$ is _______.

Answer:

We are asked to find the value of the expression $\tan \left( \frac{\sin^{−1} x + \cos^{−1} x}{2} \right)$ when $x = \frac{\sqrt{3}}{2}$.


We use the identity for inverse trigonometric functions:

$\sin^{–1} x + \cos^{–1} x = \frac{\pi}{2}$

(for $-1 \leq x \leq 1$)


The given value of x is $\frac{\sqrt{3}}{2}$. We check if it satisfies the condition $-1 \leq x \leq 1$.

Since $\sqrt{3} \approx 1.732$, $\frac{\sqrt{3}}{2} \approx 0.866$.

Thus, $-1 \leq \frac{\sqrt{3}}{2} \leq 1$. The condition is satisfied.


Substitute the identity into the given expression:

$\tan \left( \frac{\sin^{−1} x + \cos^{−1} x}{2} \right) = \tan \left( \frac{\pi/2}{2} \right)$


Simplify the argument of the tangent function:

$\frac{\pi/2}{2} = \frac{\pi}{4}$


The expression becomes $\tan \left( \frac{\pi}{4} \right)$.


Evaluate $\tan \left( \frac{\pi}{4} \right)$.

$\tan \left( \frac{\pi}{4} \right) = 1$


Therefore, the value of the expression is 1.


The value of expression $\tan \left( \frac{\sin^{−1} x + \cos^{−1} x}{2} \right)$ , when $x = \frac{\sqrt{3}}{2}$ is 1.

Question 46. If $y = 2 \tan^{–1} x + \sin^{–1} \left( \frac{2x}{1 + x^2} \right)$ for all x, then _____ < y < _____.

Answer:

The given expression is $y = 2 \tan^{–1} x + \sin^{–1} \left( \frac{2x}{1 + x^2} \right)$.


We use the identity relating $\sin^{–1} \left( \frac{2x}{1 + x^2} \right)$ and $\tan^{–1} x$. The identity has different forms depending on the value of x.

$\sin^{–1} \left( \frac{2x}{1 + x^2} \right) = \begin{cases} 2\tan^{–1} x & , & |x| \leq 1 \\ \pi - 2\tan^{–1} x & , & x > 1 \\ -\pi - 2\tan^{–1} x & , & x < -1 \end{cases}$


Now we substitute this into the expression for y for different ranges of x.

Case 1: $x > 1$

$y = 2 \tan^{–1} x + (\pi - 2\tan^{–1} x)$

$y = 2 \tan^{–1} x + \pi - 2\tan^{–1} x$

$y = \pi$

For all $x > 1$, $y$ is constantly $\pi$.


Case 2: $|x| \leq 1$ (i.e., $-1 \leq x \leq 1$)

$y = 2 \tan^{–1} x + (2\tan^{–1} x)$

$y = 4\tan^{–1} x$

For $-1 \leq x \leq 1$, the range of $\tan^{–1} x$ is $[\tan^{–1}(-1), \tan^{–1}(1)] = [-\frac{\pi}{4}, \frac{\pi}{4}]$.

The range of $y = 4\tan^{–1} x$ is $[4 \times (-\frac{\pi}{4}), 4 \times \frac{\pi}{4}] = [-\pi, \pi]$.


Case 3: $x < -1$

$y = 2 \tan^{–1} x + (-\pi - 2\tan^{–1} x)$

$y = 2 \tan^{–1} x - \pi - 2\tan^{–1} x$

$y = -\pi$

For all $x < -1$, $y$ is constantly $-\pi$.


Combining the results from all cases:

  • For $x < -1$, $y = -\pi$.
  • For $-1 \leq x \leq 1$, $y \in [-\pi, \pi]$.
  • For $x > 1$, $y = \pi$.

The set of all possible values of y is the union of these ranges: $\{-\pi\} \cup [-\pi, \pi] \cup \{\pi\} = [-\pi, \pi]$.


The range of y is $[-\pi, \pi]$. The question asks for the blanks in "_____ < y < _____". Although the range is a closed interval, this format typically indicates the lower and upper bounds.


Therefore, $-\pi \leq y \leq \pi$ for all x.

Filling the blanks with the boundary values, as is common in this format, we get $-\pi$ and $\pi$.


If $y = 2 \tan^{–1} x + \sin^{–1} \left( \frac{2x}{1 + x^2} \right)$ for all x, then $-\pi$ < y < $\pi$ (understanding that y can be equal to the boundaries).


The completed statement is: If $y = 2 \tan^{–1} x + \sin^{–1} \left( \frac{2x}{1 + x^2} \right)$ for all x, then $-\pi$ < y < $\pi$.

Question 47. The result $\tan^{–1} x – \tan^{–1} y = \tan^{–1} \left( \frac{x − y}{1 + xy} \right)$ is true when value of xy is ____.

Answer:

The formula for the difference of inverse tangents is given by:

$\tan^{–1} x – \tan^{–1} y = \tan^{–1} \left( \frac{x − y}{1 + xy} \right)$


This particular form of the identity is valid under certain conditions on the values of x and y.


The standard condition for the identity $\tan^{–1} x – \tan^{–1} y = \tan^{–1} \left( \frac{x − y}{1 + xy} \right)$ to hold is that the denominator of the argument of $\tan^{–1}$ must be positive to align with the principal value range.

That is, $1 + xy > 0$.


Solving the inequality for xy:

1 + xy > 0

xy > -1


So, the result $\tan^{–1} x – \tan^{–1} y = \tan^{–1} \left( \frac{x − y}{1 + xy} \right)$ is true when the value of xy is greater than -1.


The result $\tan^{–1} x – \tan^{–1} y = \tan^{–1} \left( \frac{x − y}{1 + xy} \right)$ is true when value of xy is > -1.

Question 48. The value of cot–1 (–x) for all x ∈ R in terms of cot–1 x is _______.

Answer:

We need to express $\cot^{–1} (–x)$ in terms of $\cot^{–1} x$ for all $x \in R$.


Let $y = \cot^{–1} (-x)$. By the definition of the inverse cotangent function, this means:

$\cot(y) = -x$

where $y$ is in the principal value branch of $\cot^{-1}$, which is $(0, \pi)$.


We also know that $\cot^{–1} x = \theta$, which means $\cot(\theta) = x$, where $\theta \in (0, \pi)$.


We need to relate $\cot(y) = -x$ to $\cot(\theta) = x$. We use the trigonometric identity relating $\cot(\theta)$ and $\cot(\pi - \theta)$.

$\cot(\pi - \theta) = -\cot(\theta)$


Substitute $\cot(\theta) = x$ into the identity:

$\cot(\pi - \theta) = -x$


We have $\cot(y) = -x$ and $\cot(\pi - \theta) = -x$. Thus, $\cot(y) = \cot(\pi - \theta)$.


Since $y = \cot^{–1}(-x)$, $y$ must be in the interval $(0, \pi)$.

Since $\theta = \cot^{–1}(x)$, $\theta$ is in the interval $(0, \pi)$, i.e., $0 < \theta < \pi$.

Multiplying by -1 gives $-\pi < -\theta < 0$.

Adding $\pi$ gives $\pi - \pi < \pi - \theta < \pi - 0$, so $0 < \pi - \theta < \pi$.

This shows that $\pi - \theta$ is also in the principal value branch of $\cot^{-1}$.


Since $\cot(y) = \cot(\pi - \theta)$ and both $y$ and $\pi - \theta$ are in the principal value branch $(0, \pi)$, we can conclude that they must be equal.

$y = \pi - \theta$


Substitute back the expressions for y and $\theta$:

$\cot^{–1} (-x) = \pi - \cot^{–1} x$

This identity holds for all $x \in R$ because the domain of $\cot^{-1}(x)$ is R.


The value of cot–1 (–x) for all x ∈ R in terms of cot–1 x is $\pi - \cot^{–1} x$.

Question 49 to 55 (True or False)

State True or False for the statement in each of the Exercises 49 to 55.

Question 49. All trigonometric functions have inverse over their respective domains.

Answer:

The statement claims that all trigonometric functions have inverses over their respective domains.


A function has an inverse if and only if it is one-to-one (injective) over its domain.


Trigonometric functions are periodic. For example, the sine function repeats its values every $2\pi$ radians, i.e., $\sin(x) = \sin(x + 2\pi) = \sin(x + 4\pi)$, etc.

Similarly, the cosine function is periodic, $\cos(x) = \cos(x + 2\pi)$. The tangent function is periodic with a period of $\pi$, $\tan(x) = \tan(x + \pi)$.


Because of their periodic nature, trigonometric functions take the same value for infinitely many different inputs within their respective domains. This means they are not one-to-one over their entire domains.


For instance, the domain of $\sin(x)$ is R, but $\sin(0) = 0$ and $\sin(\pi) = 0$. Since different inputs (0 and $\pi$) give the same output (0), the sine function is not one-to-one over R.


To define inverse trigonometric functions, we restrict the domain of the original trigonometric functions to intervals where they are one-to-one and onto their ranges. These restricted domains are called the principal value branches.


Since trigonometric functions are not one-to-one over their entire respective domains, they do not have inverses over those domains.


Therefore, the given statement is false.


The statement "All trigonometric functions have inverse over their respective domains" is False.

Question 50. The value of the expression (cos–1 x)2 is equal to sec2 x.

Answer:

The statement claims that the value of the expression $(\cos^{–1} x)^2$ is equal to $\sec^2 x$.


Let's analyse the two expressions:

1. $(\cos^{–1} x)^2$: Here, $\cos^{-1} x$ represents the principal value of the angle whose cosine is x. The domain of $\cos^{-1} x$ is $[-1, 1]$, and its range is $[0, \pi]$. Thus, $(\cos^{–1} x)^2$ is the square of an angle in radians, and its value lies in the range $[0^2, \pi^2] = [0, \pi^2]$.

2. $\sec^2 x$: Here, x is an angle (in radians or degrees), and $\sec^2 x$ represents the square of the secant of that angle. The domain of $\sec x$ is $R \setminus \{\frac{\pi}{2} + n\pi | n \in Z\}$, and the range of $\sec^2 x$ is $[1, \infty)$.


The variable 'x' in $(\cos^{–1} x)^2$ is a number in $[-1, 1]$ (a ratio), whereas the variable 'x' in $\sec^2 x$ is an angle (a real number outside certain points).


Even if we consider specific values, the expressions are generally not equal.

For example, let $x = 1$.

$\sec^2 1 = (\sec 1)^2 = \left(\frac{1}{\cos 1}\right)^2$

Since $\cos 1 \approx 0.54$, $\sec^2 1 \approx \left(\frac{1}{0.54}\right)^2 \approx (1.85)^2 \approx 3.42$.

Clearly, $0 \neq 3.42$.


The expressions represent different mathematical quantities and operate on different types of inputs (a ratio vs. an angle). They are not equal.


Therefore, the given statement is false.


The value of the expression (cos–1 x)2 is equal to sec2 x is False.

Question 51. The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.

Answer:

The statement says that the domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions.


For a function to have an inverse, it must be one-to-one (injective) and onto (surjective) over its domain and codomain.


Trigonometric functions are periodic and hence not one-to-one over their entire domains. To make them one-to-one, we restrict their domain.


A "branch" of a trigonometric function refers to an interval in its domain where the function is one-to-one and covers its entire range. For example, for the sine function, intervals like $[-\frac{\pi}{2}, \frac{\pi}{2}]$, $[\frac{\pi}{2}, \frac{3\pi}{2}]$, etc., are intervals where $\sin(x)$ is one-to-one and covers its range $[-1, 1]$. Each of these intervals can be considered a branch.


The principal value branch is just one specific choice of such an interval, chosen by convention (usually the interval containing 0 or being closest to 0).


If we restrict the domain of a trigonometric function to any interval where it is one-to-one and covers its range, then the restricted function will be invertible on that domain. The inverse function defined on this restricted domain will have a range corresponding to that specific branch.


For example, if we restrict the domain of $\sin(x)$ to $[\frac{\pi}{2}, \frac{3\pi}{2}]$, the function is one-to-one and its range is $[-1, 1]$. We can define an inverse sine function, let's call it $\sin^{-1}_1(x)$, such that its domain is $[-1, 1]$ and its range is $[\frac{\pi}{2}, \frac{3\pi}{2}]$. For instance, $\sin^{-1}_1(0) = \pi$.


Thus, it is true that the domain of trigonometric functions can be restricted to any one of their branches (where the function is one-to-one and onto its range) to obtain an inverse function corresponding to that branch.


Therefore, the given statement is true.


The domain of trigonometric functions can be restricted to any one of their branch (not necessarily principal value) in order to obtain their inverse functions is True.

Question 52. The least numerical value, either positive or negative of angleθ is called principal value of the inverse trigonometric function.

Answer:

The statement describes the principal value of an inverse trigonometric function as "the least numerical value, either positive or negative of angle $\theta$".


Let's consider the principal value branches of some inverse trigonometric functions:

  • $\sin^{-1}(x)$: Range is $[-\frac{\pi}{2}, \frac{\pi}{2}]$. This range contains angles between approximately $-1.57$ and $1.57$ radians.
  • $\cos^{-1}(x)$: Range is $[0, \pi]$. This range contains angles between $0$ and approximately $3.14$ radians.
  • $\tan^{-1}(x)$: Range is $(-\frac{\pi}{2}, \frac{\pi}{2})$. This range contains angles between approximately $-1.57$ and $1.57$ radians, excluding the endpoints.
  • $\cot^{-1}(x)$: Range is $(0, \pi)$. This range contains angles between $0$ and approximately $3.14$ radians, excluding the endpoints.
  • $\sec^{-1}(x)$: Range is $[0, \pi] \setminus \{\frac{\pi}{2}\}$.
  • $\text{cosec}^{-1}(x)$: Range is $[-\frac{\pi}{2}, \frac{\pi}{2}] \setminus \{0\}$.

Consider $\cos^{-1}(-1)$. The principal value is $\pi$. Other values of $\theta$ such that $\cos(\theta) = -1$ are $\pm \pi, \pm 3\pi, \pm 5\pi$, etc.

The numerical values of these angles are $\pi, 3\pi, 5\pi, ...$ (positive) and $-\pi, -3\pi, -5\pi, ...$ (negative).

The "least numerical value" would typically refer to the value closest to zero in magnitude.

In the set $\{\pm \pi, \pm 3\pi, \pm 5\pi, ...\}$, the numerical value with the least magnitude is $\pi$. However, the principal value of $\cos^{-1}(-1)$ is $\pi$, not the one with the least magnitude among all possible angles.


Consider $\sin^{-1}(\frac{1}{2})$. The principal value is $\frac{\pi}{6}$. Other values of $\theta$ such that $\sin(\theta) = \frac{1}{2}$ are $\frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, ...$ and $-\frac{7\pi}{6}, -\frac{11\pi}{6}, ...$ etc., and also angles like $-\frac{\pi}{6} + 2n\pi$ and $\frac{5\pi}{6} + 2n\pi$. The angles whose sine is $\frac{1}{2}$ are $\frac{\pi}{6} + 2n\pi$ and $\pi - \frac{\pi}{6} + 2n\pi = \frac{5\pi}{6} + 2n\pi$ for $n \in Z$. The numerical values are $\frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}, ...$ and $-\frac{7\pi}{6}, -\frac{11\pi}{6}, ...$ etc. Also $-\frac{\pi}{6}, -\frac{5\pi}{6}, ...$. The angle with the least numerical value (magnitude) is $\frac{\pi}{6}$. In this case, the principal value is indeed the one with the least magnitude.


The definition of the principal value branch for $\cos^{-1}(x)$ is $[0, \pi]$, which includes positive values up to $\pi$. For example, the principal value of $\cos^{-1}(-\frac{1}{2})$ is $\frac{2\pi}{3} \approx 2.09$, which is positive. The angles whose cosine is $-\frac{1}{2}$ are $\pm \frac{2\pi}{3} + 2n\pi$. The numerical values include $\frac{2\pi}{3}, \frac{4\pi}{3}, \frac{8\pi}{3}, ...$ and $-\frac{2\pi}{3}, -\frac{4\pi}{3}, -\frac{8\pi}{3}, ...$. The least numerical value in magnitude is $\frac{2\pi}{3}$. In this case, the principal value is the one with the least magnitude.


Let's re-examine the definition. The principal value is the unique angle within the defined principal value branch that satisfies the trigonometric equation. The description "least numerical value, either positive or negative" matches the principal value for $\sin^{-1}$ and $\tan^{-1}$ where the principal branch is centered around 0 (or includes angles closest to 0). However, for $\cos^{-1}$ and $\cot^{-1}$, the principal branch is $(0, \pi)$ or $[0, \pi]$, which may not always contain the angle with the least magnitude if there's a negative angle with a smaller magnitude (e.g., $\cos(\frac{4\pi}{3}) = -\frac{1}{2}$, principal value is $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ is not in the branch. $\cos(-\frac{2\pi}{3}) = -\frac{1}{2}$, $-\frac{2\pi}{3}$ is not in the branch $[0, \pi]$). The definition seems more specifically tailored to the ranges $[-\frac{\pi}{2}, \frac{\pi}{2}]$.


The principal value is determined by the specific range defined for each inverse trigonometric function, which ensures a one-to-one correspondence. While for $\sin^{-1}$ and $\tan^{-1}$, the principal value often corresponds to the angle with the smallest absolute value, this is not the fundamental definition and doesn't accurately cover all inverse trigonometric functions (e.g., $\cos^{-1}$). The definition relies on the established principal value branches, not just the "least numerical value".


Therefore, the given statement is false as a general definition for all inverse trigonometric functions.


The least numerical value, either positive or negative of angleθ is called principal value of the inverse trigonometric function is False.

Question 53. The graph of inverse trigonometric function can be obtained from the graph of their corresponding trigonometric function by interchanging x and y axes.

Answer:

The statement says that the graph of an inverse trigonometric function can be obtained from the graph of its corresponding trigonometric function by interchanging x and y axes.


If a function is defined by $y = f(x)$, its inverse function, $y = f^{-1}(x)$, is obtained by interchanging the roles of x and y. This means if $(a, b)$ is a point on the graph of $y = f(x)$, then $(b, a)$ is a point on the graph of $y = f^{-1}(x)$.


Geometrically, interchanging the x and y coordinates of all points on a graph is equivalent to reflecting the graph across the line $y = x$.


Consider a trigonometric function, say $\sin(x)$. Let's consider its restricted graph over the principal value branch $[-\frac{\pi}{2}, \frac{\pi}{2}]$. The points on this graph are of the form $(x, \sin(x))$ where $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.


The inverse sine function, $\sin^{-1}(x)$, is defined such that if $y = \sin^{-1}(x)$, then $x = \sin(y)$, where $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$. The points on the graph of $y = \sin^{-1}(x)$ are of the form $(x, \sin^{-1}(x))$, which means they are of the form $(\sin(y), y)$ where $y \in [-\frac{\pi}{2}, \frac{\pi}{2}]$.


If we take the points $(x, \sin(x))$ from the restricted graph of $\sin(x)$ and interchange the coordinates, we get points $(\sin(x), x)$. If we let $y' = x$, then the points are $(\sin(y'), y')$. These are precisely the points on the graph of the inverse sine function, where the domain is the range of the restricted sine function ($[-1, 1]$) and the range is the restricted domain of the sine function ($[-\frac{\pi}{2}, \frac{\pi}{2}]$).


The process of interchanging x and y coordinates is precisely how the graph of an inverse function is related to the graph of the original function. Reflecting a graph across the line $y=x$ corresponds to this interchange.


This principle applies to all invertible functions, including trigonometric functions when their domains are appropriately restricted to make them invertible.


Therefore, the statement is true.


The graph of inverse trigonometric function can be obtained from the graph of their corresponding trigonometric function by interchanging x and y axes is True.

Question 54. The minimum value of n for which $\tan^{–1} \frac{n}{π} > \frac{π}{4}, n ∈ N,$ is valid is 5.

Answer:

We are given the inequality $\tan^{–1} \frac{n}{π} > \frac{π}{4}$, where $n \in N$ (natural numbers).


The principal value branch of $\tan^{-1}(x)$ is $(-\frac{\pi}{2}, \frac{\pi}{2})$. The value $\frac{\pi}{4}$ is within this range.


Since the tangent function $\tan(x)$ is an increasing function on the interval $(-\frac{\pi}{2}, \frac{\pi}{2})$, its inverse $\tan^{-1}(x)$ is also an increasing function.


Applying the tangent function to both sides of the inequality, we maintain the inequality direction because $\tan(x)$ is increasing on $(-\frac{\pi}{2}, \frac{\pi}{2})$ and both $\tan^{–1} \frac{n}{π}$ and $\frac{π}{4}$ are within this interval for $n \in N$ (since $\frac{n}{\pi} > 0$, $\tan^{-1} \frac{n}{\pi} \in (0, \frac{\pi}{2})$).

$\tan\left(\tan^{–1} \frac{n}{π}\right) > \tan\left(\frac{π}{4}\right)$


Simplify both sides:

$\frac{n}{π} > 1$


Multiply both sides by $\pi$ (which is positive):

n > π


We are given that $n \in N$, which means n is a natural number ($1, 2, 3, ...$).

We need to find the minimum natural number n that satisfies $n > \pi$.

Using the approximate value of $\pi \approx 3.14159$, the inequality is $n > 3.14159$.


The natural numbers greater than 3.14159 are 4, 5, 6, ...

The minimum such natural number is 4.


The statement claims that the minimum value of n is 5.

Since the minimum value of n is 4, the statement is false.


The minimum value of n for which $\tan^{–1} \frac{n}{π} > \frac{π}{4}, n ∈ N,$ is valid is 5 is False.

Question 55. The principal value of $\sin^{–1} \left[ \cos \left( \sin^{−1} \frac{1}{2} \right) \right]$ is $\frac{π}{3}$.

Answer:

We need to find the principal value of the expression $\sin^{–1} \left[ \cos \left( \sin^{−1} \frac{1}{2} \right) \right]$.


Let's evaluate the innermost expression first: $\sin^{−1} \frac{1}{2}$.

We need to find the angle $\theta$ in the principal value branch of $\sin^{-1}(x)$, which is $[-\frac{\pi}{2}, \frac{\pi}{2}]$, such that $\sin(\theta) = \frac{1}{2}$.

$\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$

Since $\frac{\pi}{6} \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, the principal value is $\frac{\pi}{6}$.

$\sin^{−1} \frac{1}{2} = \frac{π}{6}$


Now substitute this value into the expression: $\cos \left( \sin^{−1} \frac{1}{2} \right) = \cos \left( \frac{\pi}{6} \right)$.

$\cos \left( \frac{\pi}{6} \right) = \frac{\sqrt{3}}{2}$


Finally, evaluate the outermost expression: $\sin^{–1} \left[ \cos \left( \sin^{−1} \frac{1}{2} \right) \right] = \sin^{–1} \left( \frac{\sqrt{3}}{2} \right)$.

We need to find the angle $\phi$ in the principal value branch of $\sin^{-1}(x)$, which is $[-\frac{\pi}{2}, \frac{\pi}{2}]$, such that $\sin(\phi) = \frac{\sqrt{3}}{2}$.

$\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$

Since $\frac{\pi}{3} \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, the principal value is $\frac{\pi}{3}$.

$\sin^{–1} \left( \frac{\sqrt{3}}{2} \right) = \frac{π}{3}$


The principal value of the given expression is $\frac{\pi}{3}$.


The statement claims that the principal value is $\frac{\pi}{3}$. Our calculation matches this value.


Therefore, the given statement is true.


The principal value of $\sin^{–1} \left[ \cos \left( \sin^{−1} \frac{1}{2} \right) \right]$ is $\frac{π}{3}$ is True.